Everything You Have Always Wanted to Know
about the Playstation
But Were Afraid to Ask.

Version 1.1
Compiled \ Edited By
Joshua Walker
PDF Version By
Mentz

Table of Contents

NP

Introduction
History
The R3000A
Overview
The R3000A instruction set
R3000A opcode encoding
Memory
- Memory Map
Virtual Memory
The System Control Coprocessor (Cop0)
Exception Handling
Breakpoint management
- DMA
Video
Overview
The Graphics Processing Unit (GPU)
The Graphics Transformation Engine (GTE)
The Moation Decoder (MDEC)
Sound
The Sound Processing Unit (SPU)
CD-ROM
Root Counters
Controllers
Memory Cards

. Serid port 1/0

Parallel port 110

Appendices

moow>»

Number Systems

BIOS functions

GPU command listing
Glossary of terms

Works cited — Bibliography

| ntroduction

This project to document the Playstation stated about ayear ago. It started with the utter disgust | had for
Sony of America after suing Bleem over the PSX emulation technology. | saw the ugliness of a huge multinational
company try to destroy two guys who had a good idea and even tried to share it with them. It made me sick. | wanted
to do something to help, but alas | had no money, (I still don't) but | did buy a Bleem CD to support them.

| decided to start thislittle project. Partially to prove to Sony, but mostly to prove to myself, that coming up
with the datato create you own emulator was not that hard. | also wanted to show that behind that gray box that so
many people hold dear. It'sjust acomputer with no keyboard, that plugsinto your TV. It's one thing to think that you
were spending $250 on anew PSX, but it's another to realize that the CPU costs $5.99 from LSI.

Kind of putsthing into perspective, doesn't it.

I'm not a programmer. |'ve never worked for sony, and | never signed a Non-Disclosure Agreement with
them. | just took my PSX apart, found out what made it tick, and put it back together. | also scoured the web looking
for material that | could find. | never looked at any of Sony's official documentation and never took any thing you
would haveto have alicense to get. Such as PSY-Q. | mostly poked at emulators to see how they worked. Bleem was
only 512k at the time and was pretty easy to see how it functioned without even running it through a dissembiler.
PSEmu had an awesome debugger so | can see how a PSX ran even without caelta.

| want this documentation to be freely available. Anyone can useit. From the seasoned PSX programmer to
the lurking programmer read to make the next big emulator. If thereis a discrepancy in my doc, please fix it. Tear out
parts that are wrong and correct it so it's better that what | have now. | wanted to shoot for a 75% accuracy rating. |
think | got it, but | don't know. Most of the stuff in hereis hearsay and logical deductions. Much of itismerely a
guess.

Of course there is the standard disclaimer, all trademarks are of the appropriate owners and that this
documentation is not endorsed by Sony or Bleem in any way. You are, once again, freeto give this away, tradeit, or
do what you will. It's not mine anymore. It's everybody's. Do with it what you please. Oh, and if your PSX blows up
or melts down due to this documentation, sorry. | can't assure the validity of *any* info other that | didn't get it from
Sony's official docurrentation. I'm not responsible to what you do to your machine.

In closing | wish to apologize for the way thisintroduction was written asit's 2:00 in the morning. | have a
wedding to get to at 10:30 and I've been up for the last three days finishing the darn thing. | wish to thank everyone
who supported me. Janice, for believing in me and My girlfriend Kim who put it with the long nightsin front of the
computer writing and the long days in fornt of the Playstation claming | was "doing research”" while playing FF8. |
can't think of anything more to say. Have fun with this

-Joshua Walker

4/29/00
2:34am

84905

History

Prologue B.P. (Before PlayStation)

Before the release of the PlayStation, Sony had never held alarge portion of the videogames market. It had
made afew foraysinto the computer side of things, most notably initsinvolvement with the failed MSX chip inthe
early 80's, but it wasn't until the advent of CD-ROM technology that Sony could claim any market share. A joint
venture with the Dutch company Philips had yielded the CD-ROM/XA, an extension of the CD-ROM format that
combined compressed audio, and visual and computer data and allowed both to be accessed simultaneously with the
aid of extra hardware. By the late 80's, CD-ROM technology was being assimilated, albeit slowly, into the home
computer market, and Sony was right there along side it. But they wanted a bigger piece of the pie.

1988 Sony EntersThe Arena

By 1988, the gaming world was firmly gripped in Nintendo's 8-hit fist. Sega had yet to make a proper
showing, and Sony, although hungry for some action, hadn't made any moves of its own.

Yet.

Sony'sfirst foray into the gaming market camein 1988, when it embarked on adeal with Nintendo to develop
aCD-ROM drive for the Super NES, not scheduled to be released for another 18 months. This was Sony's chance to
finally get involved in the home videogame market. What better way to enter that arena than on the coat-tails of the
world's biggest gaming company?

Using the same Super Disc technology as the proposed SNES drive, Sony began devel opment on what was
to eventually become the PlayStaion. Initially called the Super Disc, it was supposed to be ableto play both SNES
cartridges and CD-ROM s, of which Sony wasto be the "sole worldwide licenser," as stated in the contract. Nintendo
was now to be at the mercy of Sony, who could manufacture their own CDs, play SNES carts, and play Sony CDs.
Needless to say, Nintendo began to get worried.

1991 Multimedia ComesHome

1991 saw the commercial release of the multimedia machine in the form of Philips' CD-I, which had initially
been developed jointly by both Philips and Sony until mounting conflicts resulted in a parting of ways. Multimedia,
with the current rise of the CD-ROM, was seen as the next big thing. And although the CD-l was too expensive for
the mass market, its arrival cemented the CD-ROM as amedium for entertainment beyond the computer.

June 1991 Treachery At The 11th Hour

I n June of 1991, at the Chicago CES (Consumer Electronics Show), Sony officially announced the Play
Station (space intentional). The Play Station would have a port to play Super Nintendo cartridges, aswell asa CD-
ROM drive that would play Sony Super Discs. The machine would be able to play videogames as well as other forms
of interactive entertainment, as was considered important at the time.

Sony intended to draw on its family of companies, including Sony Music and Columbia Pictures, to develop
software. Olaf Olafsson, then chief of Sony Electronic Publishing, was seen on the set of Hook, Steven Spielberg's
new Peter Pan movie, presumably deciding how the movie could be worked into agame for the fledgling Play Station.
In Fortune magazine, Olafsson was quoted as saying " The video-game business...will be much more interesting (than
when it was cartridge based). By owning a studio, we can get involved right from the beginning, during the writing of
the movie."

By this point, Nintendo had had just about all it could take. On top of the deal signed in 1988, Sony had also
contributed the main audio chip to the cartridge-based Super NES.

The Ken Kutaragi-designed chip was a key element to the system, but was designed in such away asto
make effective development possible only with Sony's exp ensive development tools. Sony had also retained all rights
to the chip, which further exaserbated Nintendo.

The day after Sony announced its plans to begin work on the Play Station, Nintendo made an
announcement of its own. Instead of confirming its alliance with Sony, as everyone expected, Nintendo announced it
was working with Philips, Sony's longtimerivals, on the SNES CD-ROM drive. Sony was understandably furious.

Because of their contract-breaking actions, Nintendo not only faced legal repercussions from Sony, but
could also experience a serious backlash from the Japanese business community. Nintendo had broken the unwritten
law that a company shouldn't turn against a reigning Japanese company in favor of aforeign one.

However, Nintendo managed to escape without a penalty. Because of their mutual involvement, it would be
in the best interests of both companiesto maintain friendly relations. Sony, after all, was planning a port for SNES
carts, and Nintendo was still using the Sony audio chip.

1992 The Smoke Clears

By the end of 1992, most of the storm had blown over. Despite adeal penned between Sega, one of
Nintendo's biggest competitors, and Sony, whereby Sony would produce software for the proposed Sega M ultimedia
Entertainment System, negotiations were reached with Nintendo. In October of 1992, it was announced that the two
companies CD-ROM players would be compatible. The software licensing for the proposed 32-bit machines was
awarded to Nintendo, with Sony receiving only minimal licensing royalties. Nintendo had won this battle, but hadn't
won the war. Not by along shot.

Thefirst Play Station never madeit out of the factories. Apparently, about 200 were produced, and some
software even made it to development. For whatever reason, whether it was because of the tough licensing deal with
Nintendo, or the predicted passing of masked ROM (cartridge-based) technology, Sony scrapped its prototype.
Steve Race, Sony Computer Entertainment Of America's (SCEA) then CEO, stated, " Since the deal with Nintendo
didn't cometo fruition we decided to put games on a back burner and wait for the next category. Generally, the
gaming industry has a seven-year product life-cycle, so we bided our time until we could get in on the next cycle."

1993 The Next Cycle

After returning to the drawing boards, Sony revealed the PS-X, or PlayStation-X. Gone was the original
cartridge port, as were the plans for multimedia. Apparently, Sony had visited 3DO when Trip Hawkins was selling
his hardware and had come away unimpressed, saying it was "nothing new." The PS-X wasto be a dedicated game-
machine, pure and simple. Steve Race said in Next Generation magazine, "We designed the PlayStation to be the best
game player we could possibly make. Games really are multimedia, no matter what we want to call it. The conclusionis
that the PlayStation is a multimedia machine that is positioned as the ultimate game player."

Key to Sony's battle plan was the implementation of 3D into its graphics capahilities, amove that many felt
was critical to any kind of future success. At the core of the PlayStation's 3D prowess was the R3000 processor,
operating at 33 Mhz and 30 MIPS (millions of instructions per second). While this may seem fairly average for aRISC
CPU, it'sthe PlayStation's supplementary custom hardware, designed by Ken Kutaragi (who had previously designed
the key audio chip for the SNES), that provides the real power. The CPU relies heavily on Kutaragi's VLSI (very large
scale integration) chip to provide the speed necessary to process complex 3D graphics quickly.

The CPU is backed up by the GPU (Graphics Processing Unit), which takes care of all the datafrom the CPU
and passes the results to the 1024K of dual-ported VRAM, which stores the current frame buffer and allows the
picture to be displayed on-screen. Part of this pictureinvolves adding special effects such as transparency and fog,
something that the PlayStation excels at. Thiswasto be the most impressive display of hardware the home gaming
world had ever seen

1994 Third Party Round Up
There was no doubt that Sony could deliver the hardware. After all, Sony was one of the world's largest

manufacturers of electronics. There was no denying though, that Sony was extremely green when it cameto
videogames. And no one knew it better than Sony.

Not wanting to end up like Atari or 3DO, Sony set about rounding up third party developers, assembling an
impressive 250 devel oping partiesin Japan alone. Sony also knew it had to gain the support of the millions of arcade-
going gamersif it was to succeed. The involvement of Namco, Konami, and Williams helped ensure Sony would be
able to compete with the arcade-savvy Segaon its own turf. Namco's Ridge Racer was the natural choice to be the
flagship launch game, and Williams' Mortal Kombat 111, previously promised to Nintendo for their Ultra 64, could be
tested in the arcades using the new PS-X board.

Perhaps Sony's most controversial acquisition was the purchase of Psygnosis, arelatively unknown
European developer, for $48 million. Sony needed a strong in-house devel opment team, and Psygnosis' Lemmings
seemed to point at good things. While the purchase confused many at the time, prompting vocal outcries from
naysayers and competitors alike, Psygnosis has since proven them all wrong. Sony Interactive Entertainment, as
Psygnosis was renamed, has been responsible for some of the PlayStation's best games, including WipeOut and
Destruction Derby.

Sony's acquisition of Psygnosisyielded another fruit as well: the development system. SN Systems, co-
owned by Andy Beveridge and Martin Day, had been publishing its devel opment software through Psygnosis under
the PSY-Q moniker. Sony originally had been planning on using expensive, Japanese M1PS R4000-based machines
that would be connected to the prototype PS-X box. Having become accustomed to devel oping on the PC, Psygnosis
gave Beveridge and Day first crack at creating a PlayStation development system that would work with a standard
PC.

The two men worked through Christmas and New Y ear's, around the clock, eventually completing the GNU-
C compiler and the source-level debugger. Psygnosis quickly arranged a meeting for SN and Sony at the Winter CES
in LasVegas, 1994. Fortunately, Sony liked the PSY-Q alternative and decided to work with SN Systems on
cendensing the software onto two PC-compatible cards. Thus, an afordable and, more importantly, universally
compatible PlayStation development station was born.

December 3, 1994 We Have Lift Off

On December 3, 1994, the Play Station was finally released in Japan, one week after the Sega Saturn. The
initial retail cost was 37,000 yen, or about $387. Software available at launch included King's Field, Crime Crackers,
and Namco's Ridge Racer, the PlayStation's first certifiable killer app. It was met with long lines across Japan, and was
hailed by Sony as their most important product since the WalkMan in the late 1970's.

Also available at launch were a host of peripherals, including: amemory card to save high scores and
games; alink cable, whereby you could connect two PlayStations and two TV s and play against afriend; a mouse
with pad for PC ports; an RFU Adaptor; an S-Video Adaptor; and a Multitap Unit. Third party peripherals were also
available, including Namco's Negcon.

Thelook of the PlayStation was dramatically different than the Saturn, which was beige (in Japan), bulky,
and somewhat clumsy looking. In contrast, the PlayStation was slim, sleek, and gray, with arevolutionary controller
that was years ahead of the Saturn's SNES-like pad. The new PSX joypad provided unheardof control by adding two
more buttons on the shoulder, making atotal of eight buttons. The two extended grips also added a new element of
control. Ken Kutaragi realized the importance of control when dealing with 3 Dimensional game worlds. "We
probably spent as much time on the joypad's devel opment as the body of the machine. Sony's boss showed special
interest in achieving the final version so it has his seal of approval." To Sony's delight, the PlayStation sold more
than 300,000 unitsin the first 30 days. The Saturn claimed to have sold 400,000, but research has shown that number
to be misleading. The PSX sold through (to customers) 97% of its stock, while many Saturns were still sitting on the
shelves. These misleading numbers were to be quoted by Sega on many occasions, and continued even after the US
launch.

1995 Setting Up House

By mid-1995, Sony had set its sights firmly on the United States. Sony Computer Entertainment of America
was created and housed in Foster City, California, in the heart of Silicon Valley. Steve Race, formerly of Atari, was
appointed as president and CEO of the new branch of Sony. The accumulation of third party developers continued
apace, with over 100 licensesin the US and 270 licenses in Japan secured. Steve Race said, "We've allowed people to
come in and to play on the PlayStation - and at a much more reasonable cost than has been done in the old days with

Nintendo and Sega." Sony's development strategy had paid off, with over 700 devel opment units having been
shipped out worldwide.

May 11, 1995 Victory At E3

The Electronic Entertainment Expo (E3) was held in Los Angelesfrom May 11 to 13, 1995, and wasthe
United State'sfirst real look at the PlayStation. Sony made a huge impression at the show with their (rumored) $4
million booth and surprise appearance by Michael Jackson. The PSX was definitely the highlight of the show,
besting Sega's Saturn and Nintendo's laughable Virtual Boy.

The launch software was also displayed, with WipeOut and Namco's Tekken and Ridge Racer drawing the
most praise. Sony also announced the unit would not be bundled with Ridge Racer, as was previously assumed.

Overall, Sony made avery formidable showing at E3. They had already proven themselves in Japan and
were close on Sega's heels. Over the course of the next year they would overtake Sega and conquer Japan as their
own. Now they were poised to do the samein America.

September 9, 1995 You Are Not Ready

The PlayStation launched in the United States on September 9, 1995 to instant success. Although it retailed
for $299, that was still $100 less than the Sega Saturn. Over 100,000 units were already presold at launch, and 17
games were available. Stores reported sell-outs across the country, and sold out of many games and peripherals as
well, including second controllers and memory cards.

Sony'sinitial marketing strategy seemed to be aimed at an older audience than the traditional 8-16 year old
demographic of the past. With thetag line"U R Not E" (the"E" being red) and arumored $40 million to spend on
launch marketing, Sony swiftly positioned itself as the market leader. To further cement their audience demographic,
Sony sponsored the 1995 MTV Music Awards.

Epilogue What A Year

By the US launch, Sony had sold over one million PlayStations in Japan alone. Since the US launch, as of late 1996,
the PlayStation has sold over 7 million units worldwide, with close to two million of those being inthe US alone. In
May of 1996, Sony dropped the price of the PlayStation to $199, making it even more attractive to buy.

Like Japan, America and Europe embraced the PlayStation as their next -gen console of choice. The
demographic of PlayStation owners has fallen in years steadily from twenty-somethings to the younger age bracket
so coveted by Nintendo. In fact, many former Nintendo loyalists, tired of waiting for the Nintendo 64 to be rel eased,
bought PlayStations and are now happier for it. With close to 200 games available by Christmas 1996, it's easy to see
why. Thisreally isthe ultimate gaming consol el

The R3000A

Overview

The heart of the PSX isadlightly modified R3000A CPU from MIPSand LSI. Thisisa 32 bit Reduced
Instruction Set Controller (RISC) processor that clocks at 33.8688 MHz. It has an operating performance of 30 million
instructions per second. In addition, it has an Internal instruction cache of 4 KB, adata cache of 1 KB and has abus
transfer rate of 132 MB/sec. It hasinternally one Arithmetic/Logic unit (ALU), One shifter, and totally lacks an FPU or
floating point unit. The R3000A is configured for litle-endian byte order and defines aword as 32-bits, a half-word,
as 16-bits, and a byte as 8-hits.

The PSX has two coprocessors, cop0, the System Control coprocessor, and cop2, the GPU or Graphics
Processing Unit. These are covered later on in this document.

Instruction cache

The PSX’s R3000A contains 4 KB of instruction cache. Theinstruction cache is organized with aline size of
16 bytes. Thisshould achieve hit rate of around 80%. The cache isimplemented using physical address and tags, as
opposed to virtual ones.

Data cache

The PSX’ s R3000A incorporates an on-chip data cache of 1KB, organized as aline size of 4 bytes (one
word). Thisaso should achieve hit rates of 80% in most applications. Thisalso is a directly mapped physical address
cache. The data cache isimplemented as awrite through cache, to maintain that the main memory isthe same asthe
interna cache. In order to minimize processor stalls due to datawrite operations, the bus interface unit uses a 4—deep
write buffer which captures address and data at the processor execution rate, allowing it to be retired to main memory
at amuch slower rate without impacting system performance.

32 bit architecture
The R3000A uses thirty-two 32-hit registers, a 32 bit program counter, and two 32 bit registersfor
multiply/divide functions. The following table lists the registers by register number, name, and usage.

General Purpose Registers

Register number Name Usage

RO ZR Constant Zero

R1 AT Reserved for the assembler

R2-R3 VO-V1 \Values for results and expression evaluation
R4-R7 AO-A3 IArguments

R8-R15 TO-T7 Temporaries (not preserved across call)
R16-R23 SO-S7 Saved (preserved across cal)

R24-R25 T8T9 M ore temporaries (not preserved across call)
R26-R27 KO-K1 Reserved for OSKernel

R28 GP Global Pointer

R29 SP Stack Pointer

R30 FP Frame Pointer

R31 RA Return address (set by function call)

Multiply/Divideresult Registersand Program counter

Name Description

HI Muultiplication 64 bit high result or division remainder
LO Multiplication 64 bit low result or division quotient
PC Program Counter

Even though all general purpose registers have different names, they are all treated the same except for two.
The RO (ZR) register is hardwired as zero. The Second exception is R31 (RA) which isused at alink register when link
or jump routines are called. These instructions are used in subroutine calls, and the subroutine return addressis
placed in register R31. Thisregister can be written to or read as a normal register in other operations.

R3000A Instruction set

The instruction encoding is based on the MIPS architecture. The means that there are three types of
instruction encoding.

[-Type (Immediate)
bp s [t limmediate |

JType (Jump)
lop_ltarget |

R-Type (Register)
|op |rs |rt |rd |shamt |funct |

where:

op is a 6-bit operation code

rs is afive bit source register specifier

rt isa5-hit target register or branch condition

immediate is a 16-bit immediate, or branch or address displacement
target is a 26-bit jump target address

rd is a 5-hit destination register specifier

shamt is a5-hit shift amount

funct is a6-bit function field

The R3000A instruction set can be divided into the following basic groups:

L oad/Stor einstructions move data between memory and the general registers. They are all encoded as“I-
Type" instructions, and the only addressing mode implemented is base register plus signed, immediate offset. This
directly enablesthe use of three distinct addressing modes: register plus offset; register direct; and immediate.

Computational instructions perform arithmetic, logical, and shift operations on valuesin registers. They are
encoded as either “R-Type” instructions, when both source operands as well as the result are general registers, and
“I-Type”, when one of the source operandsis a 16-bit immediate value. Computational instructions use athree
address format, so that operations don’t needlessly interfere with the contents of source registers.

Jump and Branch instructions change the control flow of aprogram. A Jump instruction can be encoded as
a“J-Type” instruction, in which case the Jump target addressis a paged absol ute address formed by combining the
26-bit immediate value with four bits of the Program Counter. Thisform is used for subroutine calls. Alternately,
Jumps can be encoded using the “R-Type” format, in which case the target address is a 32-bit value contained in one
of the general registers. Thisformistypically used for returns and dispatches. Branch operations are encoded as “ |-
Type” instructions. Thetarget addressis formed from a 16-bit displacement relative to the Program Counter. The
Jump and Link instructions save areturn address in Register r31. These are typically used as subroutine calls, where
the subroutine return address is stored into r31 during the call operation.

Co-Processor instructions perform operations on the co-processor set. Co-Processor Loads and Stores are
always encoded as “|I-Type” instructions; co-processor operational instructions have co-processor dependent
formats. In the R3000A, the System Control Co-Processor (cop0) contains registers which are used in memory
management and exception handling.

Specia instructions perform avariety of tasks, including movement of data between special and general
registers, system calls, and breakpoint operations. They are always encoded as“ R-Type” instructions.

INSTRUCTION SET SUMMARY

The following table describes The assembly instructions for the R3000A. Please refer to the appendix for
more detail about opcode encoding

Load and Store I nstructions

Instruction Format and Description
Load Byte LB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into rt.
Load Byte Unsigned LBU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed byte and load into rt.
Load Halfword LH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into rt.
Load Halfword Unsigned LHU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed byte and load into rt.
Load Word LW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Load contents of addressed word into register rt.
Load Word Left LWL rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word left so that addressed byte is leftmost byte of a word.
Merge bytes from memory with contents of register rt and load result into
register rt.
Load Word Right LWR rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load result into
register rt.
Store Byte SB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant byte of register rt at addressed location.
Store Halfword SH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant halfword of register rt at addressed location.
Store Word SW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant word of register rt at addressed location.
Store Word Left SWL rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt right so that leftmost byte of the word is in position
of addressed byte. Store bytes containing original data into corresponding
bytes at addressed byte.
Store Word Right SWR rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt left so that rightmost byte of the word is in position
of addressed byte. Store bytes containing original data into corresponding

|bytes at addressed byte.

Computational Ingtructions

ALU Immediate Operations

Instruction

Format and Description

IADD Immediate

IADDI 1t, rs, immediate
IAdd 16-bit sign-extended immediate to register rs and place 32-bit result in
register rt . Trap on two’s complement overflow.

IADD Immediate Unsigned

IADDIU rt, rs, immediate
IAdd 16-bit sign-extended immediate to register rs and place 32-bit result in
register rt . Do not trap on overflow.

Set on Less Than Immediate

SLTI rt, rs, immediate

Compare 16-bit sign-extended immediate with register rs as signed 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0.
Place result in register rt.

Set on Less Than Unsigned Immediate

SLTIU rt, rs, immediate

Compare 16-bit sign-extended immediate with register rs as unsigned 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place
result in register rt. Do not trap on overflow.

JAND Immediate

IANDI rt, rs, immediate
Zero-extend 16-bit immediate, AND with contents of register rs and place result
in register rt.

OR Immediate

ORI rt, rs, immediate
Zero-extend 16-bit immediate, OR with contents of register rs and place result
in register rt.

Exclusive OR Immediate

XORI t, rs, immediate
Zero-extend 16-bit immediate, exclusive OR with contents of register rs and
place result in register rt.

Load Upper Immediate

LUI rt, immediate
Shift 16-bit immediate left 16 bits. Set least significant 16 bits of word to zeroes.
Store result in register rt.

Three Operand Register-Type Operations

Instruction

Format and Description

IAdd

IADD rd, rs, rt
IAdd contents of registers rs and rt and place 32-bit result in register rd. Trap
on two’s complement overflow.

IADD Unsigned

IADDU rd, rs, rt
IAdd contents of registers rs and rt and place 32-bit result in register rd. Do not
trap on overflow.

Subtract

SUB rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result in register rd.
[Trap on two's complement overflow.

Subtract Unsigned

SUBU rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result in register rd. Do
not trap on overflow.

Set on Less Than

SLT rd, rs, rt
Compare contents of register rt to register rs (as signed 32-bit integers).
If register rs is less than rt, result = 1; otherwise, result = 0.

Set on Less Than Unsigned

SLTU rd, rs, 1t
Compare contents of register rt to register rs (as unsigned 32-bit integers). If
register rs is less than rt, result = 1; otherwise, result = 0.

IAND IAND rd, rs, rt
Bit-wise AND contents of registers rs and rt and place result in register rd.
OR OR rd, rs, 1t

Bit-wise OR contents of registers rs and rt and place result in register rd.

Exclusive OR XOR rd, rs, rt
Bit-wise Exclusive OR contents of registers rs and rt and place result in
register rd.

NOR NOR rd, rs, rt

Bit-wise NOR contents of registers rs and rt and place result in register rd.

Shift Operations

Instruction

Format and Description

Shift Left Logical

SLL rd, rt, shamt
Shift contents of register rt left by shamt bits, inserting zeroes into low order
bits. Place 32-bit result in register rd.

Shift Right Logical

SRL rd, rt, shamt
Shift contents of register rt right by shamt bits, inserting zeroes into high order
bits. Place 32-bit result in register rd.

Shift Right Arithmetic

SRA rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending the high order
bits. Place 32-bit result in register rd.

Shift Left Logical Variable

SLLV rd, rt, rs

Shift contents of register rt left. Low -order 5 bits of register rs specify number
of bits to shift. Insert zeroes into low order bits of rt and place 32-bit result in
register rd.

Shift Right Logical Variable

SRLV rd, rt, rs

Shift contents of register rt right. Low -order 5 bits of register rs specify
number of bits to shift. Insert zeroes into high order bits of rt and place 32-bit
result in register rd.

Shift Right Arithmetic Variable

SRAV rd, rt, rs

Shift contents of register rt right. Low -order 5 bits of register rs specify
number of bits to shift. Sign-extend the high order bits of rt and place 32-bit
result in register rd.

Multiply and Divide Operations

Instruction Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as twos complement values. Place 64-bit
result in special registers HI/LO

Multiply Unsigned MULTU rs, nt
Multiply contents of registers rs and rt as unsigned values. Place 64-bit result in
special registers HI/LO

Divide DIV rs, rt

Divide contents of register rs by rt treating operands as twos complements
\values. Place 32-bit quotient in special register LO, and 32-bit remainder in HI.

Divide Unsigned

DIVU rs, rt
Divide contents of register rs by rt treating operands as unsigned values. Place
32-bit quotient in special register LO, and 32-bit remainder in HI.

Move From HI MFHI rd
Move contents of special register HI to register rd.
Move From LO MFLO rd
Move contents of special register LO to register rd.
Move To HI MTHI rd
Move contents of special register rd to special register HI.
Move To LO MTLO rd

Move contents of register rd to special register LO.

Jump and Branch Ingtructions

Jump Instructions

Instruction

Format and Description

Jump

J target
Shift 26-bit target address left two bits, combine with high-order4 bits of PC
land jump to address with a one instruction delay.

[Jump and Link

JAL target

Shift 26-bit target address left two bits, combine with high-order 4 bits of PC
and jump to address with a one instruction delay. Place address of instruction
following delay slot in r31 (link register).

Jump Register

IR rs
lJump to address contained in register rs with a one instruction delay.

Jump and Link Register

JALR rs, rd
Jump to address contained in register rs with a one instruction delay. Place
laddress of instruction following delay slot in rd.

Branch Instructions

Instruction

Format and Description

Branch Target: All Branch instruction target addresses are computed as
follows: Add address of instruction in delay slot and the 16-bit offset (shifted
left two bits and sign-extended to 32 bits). All branches occur with a delay of
one instruction.

Branch on Equal

BEQ rs, rt, offset
Branch to target address if register rs equal to rt

Branch on Not

Equal

BNE rs, rt, offset
Branch to target address if register rs not equal to rt.

Branch on Less than or Equal Zero

BLEZ rs, offset
Branch to target address if register rs less than or equal to 0.

Branch on Greater Than Zero

BGTZ rs, offset
Branch to target address if register rs greater than 0.

Branch on Less Than Zero

BLTZ rs, offset
Branch to target address if register rs less than 0.

Branch on Greater than or Equal Zero

BGEZ rs, offset
Branch to target address if register rs greater than or equal to 0.

Branch on Less Than Zero And Link

BLTZAL rs, offset
Place address of instruction following delay slot in register r31 (link register).
Branch to target address if register rs less than 0.

Branch on greater than or Equal Zero And

Link

BGEZAL rs, offset
Place address of instruction following delay slot in register r31 (link register).

Branch to target address if register rs is greater than or equal to 0.

Special Ingtructions

Instruction Format and Description
System Call SYSCALL
Initiates system call trap, immediately transferring control to exception handler.
More information on the PSX SYSCALL routines are covered later on.
Breakpoint BREAK

Initiates breakpoint trap, immediately transferring control to exception handler.

More information on the PSX SY SCALL routines are covered later on.

Co-processor Instructions

Instruction

Format and Description

Load Word to Co-processor

LWCz rt, offset (base)
Sign-extend 16-bit offset and add to base to form address. Load contents of
laddressed word into co-processor register rt of co-processor unit z.

Store Word from Co-processor

ISWCz rt, offset (base)
Sign-extend 16-bit offset and add to base to form address. Store contents of
co-processor register rt from co-processor unit z at addressed memory word.

Move To Co-processor

MTCz rt, rd
Move contents of CPU register rt into co-processor register rd of co-processor
unit z.

Move from Co-processor MFCz rt,rd
Move contents of co-processor register rd from co-processor unit z to CPU
register rt.

Move Control To Co-processor CTCz rt,rd

Move contents of CPU register rt into co-processor control register rd of co-
processor unit z.

Move Control From Co-processor

CFCz rt,rd
Move contents of control register rd of co-processor unit z into CPU register rt.

Move Control To Co-processor

(COPz cofun
Co-processor z performs an operation. The state of the R3000A is not modified

by a co-processor operation.

System Control Co-processor (COPOQ) Instructions

Instruction

Format and Description

Move To CPO

MTCO rt, rd
Store contents of CPU register rt into register rd of CPO. This follows the
convention of store operations.

Move From CPO MFCO rt, rd
Load CPU register rt with contents of CPO register rd.
Read Indexed TLB Entry TLBR

Load EntryHi and EntryLo registers with TLB entry pointed at by Index register.

\Write Indexed TLB Entry

TLBWI
Load TLB entry pointed at by Index register with contents of EntryHi and
EntryLo registers.

\Write Random TLB Entry

TLBWR
Load TLB entry pointed at by Random register with contents of EntryHi and
EntryLo registers.

Probe TLB for Matching Entry

TLBP

Entry Load Index register with address of TLB entry whose contents match
EntryHi and EntryLo. If no TLB entry matches, set high-order bit of Index
register.

Restore From Exception

RFE
Restore previous interrupt mask and mode bits of status register into current

status bits. Restore old status bits into previous status bits.

R3000A OPCODE ENCODING

The following shows the opcode encoding for the MIPS architecture.

Bits
38...29

~NOoO b~ WNPRFE O

Bits

[
w

No A WNEREO:!

Bits
20...19

[N

Bits
25...24

Bits

[N

OPCODE
28...26
0 1 2 3 4 5 6 7
SPECIAL BCOND J JAL BEQ BNE BLEZ BGTZ
ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
COPO COP1 COP2 COP3 t t T T
t T T T t t T T
LB LH LWL LW LBU LHU LWR t
SB SH SWL SW t T SWR t
LWCO LWC1 LWC2 LWC3 T T T T
SWCO SWC1 SWC2 SWC3 T T T T
SPECIAL
2...0
0 1 2 3 4 5 6 7
SLL T SRL SRA SLLV T SRLV SRAV
JR JALR t t SYSCALL BREAK T T
MFHI MTHI MFLO MTLO T T T T
MULT MULTU DIV DIVU T T T T
ADD ADDU SUB SUBU AND OR XOR NOR
T T SLT SLTU T T T t
t t T t t t t T
t T T t t t T T
BCOND
8...16
0 1 2 3 4 5 6 7
BLTZ BGEZ
BLTZAL BGEZAL
COPz
23...21
0 1 2 3 4 5 6 7
MF CF MT CT
BC T T t t t t T
Co-Processor Specific Operations
COPO
2..0
0 1 2 3 4 5 6 7
TLBR TLBWI TLBWR
TLBP
RFE

Memory

Overview

The PSX’s memory consists of four 512k 60ns SRAM chips creating 2 megabytes of system memory. The
RAM is arranged so that the addresses at Ox00XXxxxx, OXAOxxxxxx, Ox80xxxxxx dl point to the same physical memory.
The PSX has a special coprocessor called cop0 that handles almost every aspect of memory management. Let usfirst
examine how the memory looks and then how it is managed.

The PSX Memory Map

0x0000_0000-0x0000 _ffff Kernd (64K)
0x0001_0000

User Memory (1.9 Meg)
Ox001f ffff

Ox1f00_0000-Ox1f00 ffff |Paralldl Port (64K)

0x1f80 0000-Ox1f80 O3ff [Scratch Pad (1024 bytes)

Ox1f80 1000-0x1f80 2fff |[Hardware Registers(8K)

0x8000_0000 Kernel and User Memory Mirror (2 Meg)
Cached

0x801f ffff

0xa000_0000 Kernel and User Memory Mirror (2 Meg)
Uncached

OxaD1f ffff

OxbfcO 0000-Oxbfc7 ffff [BIOS (512K)

All blank areas represent the absence of memory. The mirrors are used mostly for caching and exception
handling purposes The Kernel isalso mirrored in all three user memory spaces.

Virtual Memory

The PSX uses amemory architecture known as“Virtual Memory” to help with general system memory and
cache management. In a nutshell what the PSX doesis mirror the two meg of addressable space into 3 segments at
three different virtual addresses. The names of these segments are Kuseg, Kseg0, and Ksegl.

Kuseg spans from 0x0000_0000 to 0x001f ffff. Thisiswhat you might call “real” memory. Thisfacilitatesthe
kernel having direct access to user memory regions.

K seg0 begins at virtual address 0x8000_0000 and goes to 0x801f_ffff. This segment isalwaystranslated to a
linear 2M B region of the physical address space starting at physical address 0. All references through this segment
are cacheable. When the most significant three bits of the virtual address are “100”, the virtual address residesin
kseg0. The physical addressis constructed by replacing these three bits of the virtual address with the value “000”.

Kseglisalsoalinear 2MB region from 0xa000_0000 to Oxa01f ffff pointing to the same address at address 0.
When the most significant three bits of the virtual address are“101”, the virtual addressresidesin ksegl. The
physical addressis constructed by replacing these three bits of the virtual address with the value “000”. Unlike
ksegO, references through ksegl are not cacheable.

Looking alittle deeper into how virtual memory works, the following shows the anatomy of an R3000A
virtual address. The most significant 20 bits of the 32-hit virtual address are called the virtual page number, or VPN.
Only the three highest bits (segment number) are involved in the virtual to physical address translation.

31 0
L[] VAN | Offset |
31 30 29 20 12
bits 31-29
Oxx kuseg
100 kseg0
101 ksegl

The three most significant bits of the virtual address identify which virtual address segment the processor is
currently referencing; these segments have associated with them the mapping algorithm to be employed, and whether
virtual addressesin that segment may reside in the cache. Pages are mapped by substituting a 20-bit physical frame
number (PFN) for the 20-bit virtual page number field of the virtual address. This substitution is performed through
the use of the on-chip Translation L ookaside Buffer (TLB). The TLB isafully associative memory that holds 64
entriesto provide a mapping of 64 4kB pages. When avirtual referenceto kuseg each TLB entry is probed to seeif it
maps the corresponding VPN.

Virtual to physical memory trandation
Thefollowing table isaquick look at how virtual memory getstranslated viathe Translation
L ookaside Buffer. Thiswhole subsystem of memory management is handled by CopO.

Current
Process ID Program Counter
%) 0 a 12 11 f]
Wirtual
Address
. Y A
i
¥
PID VM Flags FFN
63 —i
62 —
61 .
60 —
|8 CAM Y
s | = [Content Addressable » BAM
. Memaory) -
3 —-
2 —
i —
M —-
{ ¥ ¥
£ Y 5 " Physical

| Address
a1 12 11]

Cop0, The System Control Coprocessor

ThisUnit isactually part of the R3000A. This particular copO has been modified from the original R3000A
copO architecture with the addition of afew registers and functions. Cop0 contains 16 32-bit control registers that
control the various aspects of memory management, system interrupt (exception) management, and breakpoints.
Much of it is compatible with the normal R3000A cop0. Thefollowingisan overview of the CopO registers.

Cop0 Registers
Number Mnemonic [Name Read/Write [Usage
0 INDX Index r/w Index to an entry in the 64-entry TLB file
1 RAND Random r Provides software with a“suggested” random TLB entry
to be written with the correct translation
2 TLBL [TBL low r/w Provides the data path for operations which read, write,
or probe the TLB file (first 32 bits)
3 BPC Breakpoint PC |r/w Sets the breakpoint address to break on execute
4 CTXT Context r Duplicates information in the BADV register, but
provides thisinformation in aform that may be more
useful for asoftware TLB exception handler.
5 BDA Breakpoint data [r/w Sets the breakpoint address for |oad/store operations
6 PIDMASK |PID Mask r/w Process ID mask
7 DCIC Data/Counter r/w Breakpoint control
interrupt control
8 BADV Bad Virtua r Contains the address whose reference caused an
IAddress exception.
9 BDAM Break datamask |r/w Data fetch addressis ANDed with this value and then
compared to thevaluein BDA
10 TLBH [TBL high r/w Provides the data path for operations which read, write,
or probe the TLB file (second 32 hits)
11 BPCM Break point r/w Program counter is ANDed with this value and then
counter mask compared to the valuein BPC
12 SR System status |r/w Contains all the major status bits
register
13 CAUSE Cause r Describes the most recently recognized exception
14 EPC Exception r Contains the return address after an exception
Program Counter
15 PRID Processor 1D r Cop0 type and revision level
16 ERREG ?27? ? 277?

Note that some of these registerswill be explained later in the part on exception handling. But for now we
will return to how the Cop0 is used in memory management.

Returningtothe TLB

As stated before the TLB isafully associative memory that holds 64 entries to provide a mapping of 64 4kB
pages. Each TLB entry is 64 bitswide. Thisisreferenced by the Index, Random, TBL high, and TBL low. Itisused to
virtual to physical address mapping.

Thelndex Register

The Index register is a 32-hit, read-write register, which has a 6-bit field used to index to a specific entry in
the 64-entry TLB file. The high-order bit of the register is a status bit which reflects the success or failure of aTLB
Probe (tlbp) instruction.. The Index register also specifiesthe TLB entry that will be affected by the TLB Read (tlbr)
and TLB Write Index (tlbwi) instructions. the following shows the format of the Index register.

31 30 1413 87 0

| P | 0 | Index | 0
1 17 6 8

P Probefailure. Set to 1 when the last TLBProbe (tlbp) instruction was unsuccessful.
Index Index tothe TLB entry that will be affected by the TLBRead and TLBWrite instructions.
0 Reserved. Must be written as zero, returns zero when read.

The Random Register

The Random register is a 32-bit read-only register. The format of the Random register is below. The six-bit
Random field indexes a Random entry in the TLB. It is basically a counter which decrements on every clock cycle, but
which is constrained to count in the range of 63 to 8. That is, software is guaranteed that the Random register will
never index into thefirst 8 TLB entries. These entries can be “locked” by software into the TLB file, guaranteeing that
no TLB miss exceptionswill occur in operations which use those virtual address. Thisis useful for particularly critical
areas of the operating system.

| 0 | Random | 0
18 6 8
Random A random index (with avalue from 8 to 63) toa TLB entry.
0 Reserved. Returns zero when read.

The Random register istypically used in the processing of a TLB miss exception. The Random register
provides software with a*“suggested” TLB entry to be written with the correct translation; athough slightly less
efficient than a Least Recently Used (LRU) algorithm, Random replacement offers substantially similar performance
while allowing dramatically simpler hardware and software management. To perform a TLB replacement, the TLB
Write Random (tlbwr) instruction is used to write the TLB entry indexed by this register. At reset, this counter is
preset to thevalue ‘63 . Thus, it is possible for two processors to operatein “lock-step”, even when using the
Random TLB replacement algorithm. Also, software may directly read this register, although this feature probably has
little utility outside of device testing and diagnostics.

TBL High and TBL Low Registers
These two registers provide the data path for operations which read, write, or probe the TLB file. The format
of theseregistersisthe same asthe format of aTLB entry.

TBL High TBL Low
VPN | pPD | o© FPN INfD|[V]G]| o
20 6 6 20 11 1 1 8

VPN Virtua Page Number. Bits 31..12 of virtual address.

PID Process ID field. A 6-bit field which lets multiple processes share the TLB while each process has a distinct
mapping of otherwise identical virtual page numbers.

PFN Page Frame Number. Bits 31..12 of the physical address.

N Non-cacheable. If thisbit is set, the page is marked as non-cacheable

D Dirty. If thisbit is set, the page is marked as "dirty" and therefore writable. Thisbit is actually a"write-
protect" bit that software can use to prevent alteration of data

\% Valid. If thishit is set, it indicatesthat the TLB entry isvalid; otherwise, aTLBL or TLBS Miss occurs.

G Global. If thishit is set, the R3000A ignores the PID match requirement for valid translation. In kseg2, the

Global bit letsthe kernel access all mapped data without requiring it to save or restore PID (Process | D) values.
0 Reserved. Must be written as'0', returns '0' when read.

Exception Handling

There are times when in is necessary to suspend a program in order to process a hardware or software
function. The exception processing capability of the R3000A is provided to assure an orderly transfer of control from
an executing program to the kernel. Exceptions may be broadly divided into two categories: they can be caused by an
instruction or instruction sequence, including an unusual condition arising during its execution; or can be caused by
external events such asinterrupts. When an R3000A detects an exception, the normal sequence of instruction flow is
suspended; the processor is forced to kernel mode where it can respond to the abnormal or asynchronous event. The

table below lists the exceptions recognized by the R3000A.

Exception Mnemonic Cause
Reset Reset IAssertion of the Reset signal causes an exception
that transfers control to the special vector at virtual
laddress OxbfcO_0000 (The start of the BIOS)
BusError IBE IAssertion of the Bus Error input during aread
DBE (Data) operation, due to such external events as bus
timeout, backplane memory errors, invalid physical
address, or invalid access types.
IAddressError IAdEL (L oad) Attempt to load, fetch, or store an unaligned word;
IAJES (Store) that is, aword or halfword at an address not evenly
divisible by four or two, respectively. Also caused
by reference to avirtual address with most
significant bit set whilein User Mode.
Overflow Ovf Twos complement overflow during add or subtract.
System Call Sys Execution of the SYSCALL Trap Instruction
Breakpoint Bp Execution of the break instruction
Reserved R Execution of an instruction with an undefined or
Instruction reserved major operation code (bits 31:26), or a
special instruction whose minor opcode (bits 5:0) is
undefined.
Co-processor CpU Execution of aco-processor instruction when the
Unusable CU (Co-processor usable) bit is not set for the
target co-processor.
TLB Miss TLBL (Load) A referenced TLB entry’sValid bitisn't set
TLBS (Store)
TLB Modified Mod During a store instruction, the Valid hit is set but
the dirty bit isnot set in amatching TLB entry.
Interrupt Int IAssertion of one of the six hardware interrupt
inputs or setting of one of the two software
interrupt bitsin the Cause register.

Returning to the Cop0

The Cop0 controls the exception handling with the use of the Cause register, the EPC register, the Status
register, the BADV register, and the Context register. A brief description of each follows, after which the rest of the
CopO0 registers for breakpoint management will be described for the sake of compl eteness.

The Cause Register

The contents of the Cause register describe the last exception. A 5-bit exception code indicates the cause of the
current exception; the remaining fields contain detailed information specific to certain exceptions. All bitsin this
register, with the exception of the SW bits, are read-only.

31 0

[BD [o| cE | 0 | i | sw o] ExecobeE | 0 |
1 1 2 12 6 2 1 5 2

BD Branch Delay. The Branch Delay bitisset (1) if the last exception was taken while the

processor was executing in the branch delay slot. If so, then the EPC will be rolled back to point to the branch
instruction, so that it can be re-executed and the branch direction re-determined..

CE Coprocessor Error, Contains the coprocessor number if the exception occurred because of a
coprocessor instruction for a coprocessor which wasn't enabled in SR.

IP Interrupts Pending. It indicates which interrupts are pending. Regardless of which interrupts are
masked, the IP field can be used to determine which interrupts are pending.

SW Software Interrupts. The SW bits can be written to set or reset software interrupts. Aslong as any
of the bits are set within the SW field they will cause an interrupt if the corresponding bit is set in SR under the
interrupt mask field.

0 Reserved, Must Be Written as 0. Returns O when Read
EXECODE Exception Code Field. Describes the type of exception that occurred. The following table lists the
type of exception that it was.
Number Mnemonic Description

0 INT External Interrupt

1 MOD TLB Maodification Exception

2 TLBL TLB miss Exception (Load or instruction fetch)

3 TLBS TLB miss exception (Store)

4 ADEL IAddress Error Exception (Load or instruction fetch)

5 ADES IAddress Error Exception (Store)

6 IBE Bus Error Exception (for Instruction Fetch)

7 DBE Bus Error Exception (for data L oad or Store)

8 SYS SY SCALL Exception

9 BP Breakpoint Exception

10 RI Reserved Instruction Exception

11 CPU Co-Processor Unusable Exception

12 OVF IArithmetic Overflow Exception

13-31 - Reserved

The EPC (Exception Program Counter) Register

The 32-hit EPC register contains the virtual address of the instruction which took the exception, from which
point processing resumes after the exception has been serviced. When the virtual address of the instruction resides
in abranch delay slot, the EPC contains the virtual address of the instruction immediately preceding the exception
(that is, the EPC points to the Branch or Jump instruction).

BADV Register
The BADV register saves the entire bad virtual address for any addressing exception.

Context Register

The Context register duplicates some of the information in the BADV register, but provides this information
in aform that may be more useful for a software TLB exception handler. The following illustrates the layout of the
Context register. The Context register is used to allow software to quickly determine the main memory address of the
page table entry corresponding to the bad virtual address, and allows the TLB to be updated by software very
quickly (using anine-instruction code sequence).

| PTE Base [BADV | o |

1 19 2
0 Reserved, read as 0 and must be written as 0
BADV Failing virtual page number (set by hardware read only derived from BADV register
PTE Base Base address of page table entry, set by the kernel

The Status Register

The Status register contains all the major status bits; any exception puts the system in Kernel mode. All bits
in the status register, with the exception of the TS (TLB Shutdown) bit, are readable and writable; the TS hit isread-
only. Figure 5.4 shows the functionality of the various bits in the status register. The status register contains a three
level stack (current, previous, and old) of the kernel/user mode bit (KU) and the interrupt enable (1E) bit. The stack is
pushed when each exception istaken, and popped by the Restore From Exception instruction. These bits may also be
directly read or written. At reset, the SWc, KUc, and | Ec bits are set to zero; BEV is set to one; and the value of the
TShitissetto 0 (TS=0) Therest of the bit fields are undefined after reset.

31 0
[cu[o[REJo|[BEV] TS| PE| oM [Pz]| sac [IsC | IntMask [0] Kuo | 1Eo | Kup | 1Ep | Kuc | 1EC |
4 2 1 2 1 1 1 1 1 1 1 8 2 1 1 1 1 11

The various bits of the status register are defined as follows:

CuU Co-processor Usability. These bitsindividually control user level access to co-processor operations,
including the polling of the BrCond input port and the manipulation of the System Control Co-processor (CP0). CU2
isfor the GTE, CUl isfor the FPA, which is not availablein the PSX.

RE Reverse Endianness. The R3000A allows the system to determine the byte ordering convention for the
Kernel mode, and the default setting for user mode, at reset time. If this bit is cleared, the endianness

defined at reset is used for the current user task. If thisbit is set, then the user task will operate with the opposite
byte ordering convention from that determined at reset. This bit has no effect on kernel mode.

BEV Bootstrap Exception Vector. The value of this bit determines the locations of the exception vectors of the
processor. If BEV =1, then the processor isin “Bootstrap” mode, and the exception vectorsreside
inthe BIOS ROM. If BEV = 0, then the processor isin normal mode, and the exception vectorsresidein RAM.

TS TLB Shutdown. This bit reflects whether the TLB is functioning.

PE Parity Error. Thisfield should be written with a"1" at boot time. Once initialized, thisfield will always be read
as"0'.

CM Cache Miss. Thishit is set if acache miss occurred while the cache was isolated. It is useful in determining
the size and operation of the internal cache subsystem.

Pz Parity Zero. Thisfield should always be written with a"0".

SwC Swap Caches. Setting this bit causes the execution core to use the on-chip instruction cache as a data cache
and vice-versa. Resetting the bit to zero unswaps the caches. Thisis useful for certain operations
such asinstruction cache flushing. Thisfeature is not intended for normal operation with the caches swapped.

IsC Isolate Cache. If thisbit is set, the data cache is“isolated” from main memory; that is, store operations
modify the data cache but do not cause a main memory write to occur, and load operations return the data value from
the cache whether or not a cache hit occurred. This bit isalso useful in various operationssuch as flushing.

IM Interrupt Mask. This 8-bit field can be used to mask the hardware and software interrupts to the execution
engine (that is, not allow them to cause an exception). IM(1:0) are used to mask the software interrupts, and IM (7:2)
mask the 6 external interrupts. A value of ‘0’ disables a particular interrupt, and a‘1’ enablesit. Note that the |IE bit is
aglobal interrupt enable; that is, if the |E is used to disable interrupts, the value of particular mask bitsisirrelevant; if
|E enables interrupts, then aparticular interrupt is selectively masked by thisfield.

KUo Kernel/User old. Thisisthe privilege state two exceptions previously. A ‘0’ indicates kernel mode.

IEO Interrupt Enable old. Thisisthe global interrupt enable state two exceptions previously. A ‘1’ indicates that
interrupts were enabled, subject to the IM mask.

KUp Kernel/User previous. Thisisthe privilege state prior to the current exception A ‘0’ indicates kernel mode.

IEp Interrupt Enable previous. Thisisthe global interrupt enable state prior to the current exception. A ‘1’
indicates that interrupts were enabled, subject to the IM mask.

KUc Kernel/User current. Thisisthe current privilege state. A ‘0’ indicates kernel mode.

IEC Interrupt Enable current. Thisisthe current global interrupt enable state. A ‘1’ indicates that interrupts are
enabled, subject to the IM mask.
0 Fieldsindicated as ‘0" are reserved; they must be written as ‘0", and will

return ‘0’ when read.

PRID Register
Thisregister isuseful to software in determining which revision of the processor is executing the code. The format of
thisregister isillustrated below.

| 0 | o | R |
16 8 8
Imp 3 CoPO0 type R3000A
7 IDT unique (3041) use REV to determine correct configuration.
Rev Revision level.

EXCEPTION VECTOR LOCATIONS

The R3000A separates exceptions into three vector spaces. The value of each vector depends on the BEV
(Boot Exception Vector) bit of the status register, which allows two alternate sets of vectors (and thus two different
pieces of code) to be used. Typically, thisis used to allow diagnostic tests to occur before the functionality of the
cacheisvalidated; processor reset forces the value of the BEV hittoa 1.

Exception Virtual Address Physical Address
Reset OxbfcO_0000 Ox1fc0_0000
UTLB Miss (0x8000 0000 (0x0000 0000
General (0x8000 0080 (0x0000 0080

Exception VectorsWhen BEV =0

Exception Virtual Address Physical Address
Reset OxbfcO_0000 0Ox1fcO_0000
UTLB Miss OxbfcO_0100 Ox1fc0_0100
General Oxbfc0_0180 0Ox1fc0_0180

Exception Vectors When BEV =1

Exception Priority
Thefollowing isapriority list of exceptions:

Reset At any time (highest)
AdEL Memory (Load instruction)
AdES Memory (Storeinstruction)
DBE Memory (Load or store)
MOD ALU (DataTLB)

TLBL ALU (DTLB Miss)

TLBS ALU (DTLB Miss)

Ovf ALU

Int ALU

Sys RD (Instruction Decode)
Bp RD (Instruction Decode)
RI RD (Instruction Decode)
CpuU RD (Instruction Decode)
TLBL I-Fetch (ITLB Miss)

AdEL IVA (Instruction Virtual Address)
IBE RD (end of |-Fetch, lowest)

Breakpoint Management

Thefollowingisalisting of the registersin CopO0 that are used for breakpoint management. These registers
arevery useful for low-level debugging.

BPC
Breakpoint on execute. Sets the breakpoint address to break on execute.

BDA
Breakpoint on data access. Sets the breakpoint address for |oad/store operations

DCIC

Breakpoint control. To use the Execution breakpoint, set PC. To use the Data access

breakpoint set DA and either R, W or both. Both breakpoints can be used simultaneously. When a breakpoint occurs
the PSX jumps to 0x0000_0040.

[1]1]1]o|[w]|R]| DA [PC |1] 0
111111 1 1 1 23
w 0
1 Break on Write
R 0
1 Break on Read
DA 0 Data access breakpoint disabled
1 Data access breakpoint enabled
PC 0 Execution breakpoint disabled
1 Execution breakpoint enabled
BDAM

Data Access breakpoint mask. Data fetch address is ANDed with this value and then compared
tothevaluein BDA

BPCM
Execute breakpoint mask. Program counter is ANDed with this value and then compared to
thevaluein BPC.

DMA

From time to time the PSX will need to take the CPU off the main busin order to give a device access directly
to Memory. The devices able to take control of the bus are the CD-ROM, MDEC, GPU, SPU, and the Parallel port.
Thereare 7 DMA channelsin all (The GPU and MDEC use two) The DMA registers reside between 0x1f80_1080 and
0x1f80_10f4. The DMA channel registers are located starting at 0x1f80_1080. The base address for each channel is as
follows

Base Address Channel Number Device

0x1f80_1080 DMA channel 0 MDECin

0x1f80 1090 DMA channel 1 MDECout

0x1f80 1020 DMA channel 2 GPU (lists + image data)

0x1f80_10b0 DMA channel 3 CD-ROM

0x1f80 10c0 DMA channel 4 SPU

0x1f80 10d0 DMA channel 5 PIO

0x1f80 100 DMA channel 6 GPU OTC (reverse clear the Ordering Table)

Each channel has three 32-bit control registers at a offset of the base address for that particular channel.
These registers are the DMA Memory Address Register (D_MADR) at the base address, DMA Block Control
Register (D_BCR)at baset4, and the DMA Channel Control Register (D_CHCR) at base+8.

In order to use DMA the appropriate channel must be enabled. Thisis done using the DMA Primary Control
Register (DPCR) located at 0x1f80_10f0.

DMA Primary Control Register (DPCR) 0x1f80_10f0

| | pmA6 | bpmAas | bmA4 | DMA3 | DMA2 | DMA1 | DMmAO
4 4 4 4 4 4 4 4

Each register has a4 bit control block allocated in this register.
Bit3 1=DMA Enabled

2 Unknown

1 Unknown

0 Unknown

Bit 3 must be set for achannel to operate.

As stated above, each device has three 32-bit control registerswithinit'sown DMA address space. The
following describes their functions. The n represents 8,9,a,b,c,d,e for DMA channels0,1,2,3,4,5,6 respectively.

DMA Memory Address Register (D_MADR) 0x1f80_10n0

31 0
| MADR |

MADR Pointer to the virtual addressthe DMA will start reading from/writing to.

DMA Block Control Register (D_BCR) 0x1f80_10n4

31 0
| BA | BS |
16 16

BA Amount of blocks
BS Blocksize (words)

The channel will transfer BA blocks of BS words. Take care not to set the size larger than the buffer of the
corresponding unit can hold. (GPU & SPU both have a $10 word buffer). A larger blocksize, means afaster transfer.

DMA Channd Control Register (D_CHCR) 0x1f80_10n8
31 0
[o | TR] 0 | U | col 0 | DR |
7 1 13 1 1 8 1
TR 0 No DMA transfer busy.
1 Start DMA transfer/DMA transfer busy.
LR 1 Transfer linked list. (GPU only)
6{0) 1 Transfer continuous stream of data.
DR 1 Direction frommemory
0 Direction from memory

Thelast register isused to control DMA interrupts. The usageis currently unknown.

DMA Interrupt Control Register (DICR) Ox1f80_10f4

Video

Overview

The GPU isthe unit responsible for the graphical output of the PSX. It handles display and drawing of all
graphics. It has the control over an IMB frame buffer, which at 16 bits per pixel givesyou a maximum “surface” of
1024x512 resolution. It also contains a 2K b texture cache for increased speed. The display can be set for 15-bit color
or 24-bit color.

Because the PSX also totally lacks an FPU. A second coprocessor has been added called the Geometry
Transformation Engine or GTE. The GTE isthe heart of all 3d calculations on the PSX. The GTE can perform vector
and matrix operations, perspective transformation, color equations and the like. It is much faster than the CPU on
these operations. It is mounted as the second coprocessor (Cop2) and as such takes up no physical address spacein
the PSX. The GTE is covered later in the document.

The Graphics Processing Unit (GPU)

As stated before the GPU isresponsible for graphical output. It hasat it's disposal a1 MB frame buffer and
registersto accessit. The frame buffer it totally inaccessible to the CPU, meaning that it doesn’t reside in addressable
memory. The only way to accessit isthrough the GPU. The GPU is able to take “commands’ from the CPU, or via
DMA to place abjects on the frame buffer to be displayed. Communication is handled through a command and data
port. It has a 64 byte command FIFO buffer, which can hold up to 3 commands and is connected to aDMA channel
for transfer of image data and linked command lists (channel 2) and a DMA channel for reverse clearing an Ordering
Table (channel 6).

Communication and Ordering Tables (OT).

All dataregarding drawing and drawing environment are sent as packets to the GPU. Each packet tells the
GPU how and where to draw one primitive, or it sets one of the drawing environment parameters. The display
environment is set up through single word commands using the control port of the GPU.

Packets can be forwarded word by word through the data port of the GPU, or more efficiently for large
numbers of packets through DMA. A special DMA mode was created for this so large numb ers of packets can be
sent and managed easily. In thismode alist of packetsis sent, where each entry in the list contains a header whichis
one word containing the address of the next entry and the size of the packet and the packet itself. A result of thisis
that the packets do not need to be stored sequentially. This makesit possible to easily control the order in which
packets get processed. The GPU processes the packetsit getsin the order they are offered. So thefirst entry in the
list also getsdrawn first. To insert a packet into the middle of thelist simply find the packet after which needsit to be
processed, replace the addressin that packet with the address of the new packet, and let that point to the address
that was replaced.

Toaidinfinding alocation in thelist, the Ordering Table wasinvented. At first thisisbasically alinked list
with entries of packet size 0, soit'salist of only list entry headers, where each entry pointsto to the next entry. Then
as primitives are generated by your program you can then add them to the table at a certain index. Just read the
addressin the table entry and replace it with the address of the new packet and store the address from the table in the
packet. When all packets are generated drawing will just require passing the address of thefirst list entry to the DMA
and the packetswill get drawn in the order you entered the packets to the table. Packets entered at a higher table
index will get drawn after those entered at alower table index. Packets entered at the same index will get drawn in the
order they were entered, the last one first.

In 3d drawing it's most common that you want the primitives with the highest Z value to be drawn first, so it
would be niceif the table would be drawn the other way around, so the Z value can be used asindex. Thisisasimple
thing, just make atable of which each entry pointsto the previous entry, and start the DMA with the address of the
last table entry. To assist you in making such atable, aspecial DMA channel is available which createsit for you.

The Frame Buffer

The frame buffer isthe memory which stores all graphic data which the GPU can access and manipul ate,
while drawing and displaying an image . The memory is under the GPU and cannot be accessed by the CPU directly.
Itisoperated solely by the GPU. The frame buffer hasasizeof 1 MB and is treated as a space of 1024 pixels wide and

512 pixels high. Each "pixel" has the size of oneword (16 bit). It is not treated linearly like usual memory, but is
accessed through coordinates, with an upper left corner of (0,0) and alower right corner of (1023,511).

When datais displayed from the frame buffer, arectangular areais read from the specified coordinate within
this memory. The size of this area can be chosen from several hardware defined types. Note that these hardware sizes
areonly validwhenthe X and Y stop/start registers are at their default values. This display area can be displayed in
two color formats, being 15bit direct and 24bit direct. The dataformat of one pixel isasfollows.

15-bit direct display

Pixe
M | Blue | Green | Red
15 14 109 54 0

This means each color has avalue of 0-31. The MSB of apixel (M) isused to mask the pixel.

24-bit direct display
The GPU can also be set to 24bit mode, in which case 3 bytes form one pixel, 1 byte for each color. Datain
this modeis arranged as follows:

Pixd 0 Pixd 1 Pixd 2
€0 | RO R1 | BO B1 | Gl
15 87 015 87 015 87 0

Thus 2 display pixels are encoded in 3 frame buffer pixels. They are displayed asfollows. [R0,G0,B0]
[R1,G1,B1].

Primitives.
A basic figure which the GPU can draw is called a primitive, and it can draw the following:

Polygon
The GPU can draw 3 point and 4 point polygons. Each point of the polygon specifies apoint in the frame
buffer. The polygon can be also be gourad shaded. The correct order of vertices for 4 point polygonsisasfollows

1 2

[1]

3 4

A 4 point polygon is processed internally astwo 3 point polygons. also note when drawing a polygon the
GPU will not draw the right most and bottom edge. So a (0,0)-(32,32) rectangle will actually be drawn as (0,0)-(31,31).
Make sure adjoining polygons have the same coordinatesif you want them to touch each other!.

Polygon with texture
A primitive of thistypeisthe same as above, except that atextureis applied. Each vertex of the polygon mapsto
apoint on atexture page in the frame buffer. The polygon can be gourad shaded.
Because a4 point polygon is processed internally as two 3 point polygons, texture mapping is also done
independently for both halves. This has some annoying consequences.

Rectangle
A rectangleis defined by the location of the top left corner and its width and height. Width and height can be either
free, 8*8 or 16* 16. It's drawn much faster than a polygon, but gourad shading is not possible.

Sprite

A spriteis atextured rectangle, defined as arectangle with coordinates on atexture page. Like the rectangleis
drawn much faster than the polygon equivalent. No gourad shading possible. Even though the primitiveiscalled a
sprite, it has nothing in common with the traditional sprite, other than that it's arectangular piece of graphics. Unlike
the PSX sprite, the traditional spriteis NOT drawn to the bitmap, but gets sent to the screen instead of the actual
graphics data at that location at display time.

Line
A lineisastraight line between 2 specified points. The line can be gourad shaded. A special formisthe polyline, for
which an arbitrary number of points can be specified.

Dot
The dot primitive draws one pixel at the specified coordinate and in the specified color. It isactually a special form of
rectangle, with asize of 1x1.

Textures

A textureisan image put on a polygon or sprite. It is necessary to prepare the data beforehand in the frame
buffer. Thisimageis called atexture pattern. The texture pattern islocated on atexture page which has a standard
size and islocated somewhere in the frame buffer, see below. The data of atexture can be stored in 3 different modes

15-bit direct mode

10
S | Blue | Green | Red
15 14 109 54 0

This means each color has avalue of 0-31. The MSB of a pixel (S) isused to specify it the pixel is semi
transparent or not. More on that | ater.

8bit CLUT mode,
Each pixel is defined by 8bits and the value of the pixel is converted to a 15-bit color using the CLUT(color
lookup table) much like standard VGA pictures. So in effect you have 256 colors which arein 15bit precision.

[11 | w0 |
15 87 0

I0istheindex to the CLUT for theleft pixel, 11 for theright.

4-bit CLUT mode,
Same as above except that only 16 colors can be used. Datais arranged as follows:

Il 1’ | 12 | 1 | 1o |
15 1211 87 43 0

[0 isfirst drawn to the left to 13 to theright.

Texture Pages
Texture pages have a unit size of 256* 256 pixels, regardless of color mode. This meansthat in the frame buffer
they will be 64 pixelswide for 4bit CLUT, 128 pixelswide for 8bit CLUT and 256 pixelswide for 15-bit direct. The pixels

are addressed with coordinates rel ative to the location of the texture page, not the frame buffer. So the top left texture
coordinate on atexture pageis (0,0) and the bottom right oneis (255,255). The pages can be located in the frame
buffer on X multiples of 64 and Y multiples of 256. More than one texture page can be set up, but each primitive can
only contain texture from one page.

Texture Windows

The areawithin atexture window is repeated throughout the texture page. The datais not actually stored all over
the texture page but the GPU reads the repeated patterns asif they werethere. The X and Y
and H and W must be multiples of 8.

CLUT (Color Lookup Table)
The CLUT isathetable where the colors are stored for the image datain the CLUT modes. The pixels of those images
are used as indexesto thistable. The CLUT isarranged in the frame buffer as a 256x1 image for the 8bit CLUT mode,
and a 16x1 image for the 4bit CLUT mode. Each pixel asa 16 bit value, the first 15 used of a 15 hit color, and the 16th
used for semi-transparency. The CLUT data can be arranged in the frame buffer at X multiples of 16 (X=0,16,32,48,€etc)
and anywhereinthe Y range of 0-511. More than one CLUT can be prepared but only one can be used for each
primitive.

Texture Caching

If polygons with texture are displayed, the GPU needs to read these from the frame buffer. This slows down the
drawing process, and as aresult the number of polygons that can be drawn in a given time span. To speed up this
process the GPU is equipped with atexture cache, so agiven piece of texture needs not to be read multipletimesin
succession. The texture cache size depends on the color mode used for the textures. In 4-bit CLUT modeit hasasize
of 64x64, in 8-bit CLUT it's 32x64 and in 15-bit direct is 32x32. A general speed up can be achieved by setting up
textures according to these sizes. For further speed gain a more precise knowledge of how the cache worksis
necessary.

Cache blocks
Thetexture page is divided into non-overlapping cache blocks, each of a unit size according to color mode.
These cache blocks are tiled within the texture page.

Cache
Block
0 1 2...

- Cache entries
Each cache block is divided into 256 cache entries, which are numbered sequentially, and are 8 bytes wide.
So acache entry holds 16 4-bit CLUT pixels 8 8-bit CULT pixels, or 4 15hitdirect pixels.

4-bit and 8-bit CLUT
1 2 3
5 6 7
9

|OOO-I>O

15-bit direct
0 1 2 3 4 5 6 7
8 9 a b C d e f
10 | 11

The cache can hold only one cache entry by the same number, soif for example, a
piece of texture spans multiple cache blocks and it has dataon entry 9 of block 1, but also on entry 9 of block 2, these
cannot be in the cache at once.

Rendering options
There are 3 modes which affect the way the GPU renders the primitivesto the frame buffer.

Semi Transparency

When semi transparency is set for a pixel, the GPU first reads the pixel it wantsto write to, and then calcul ates
the color it will write from the 2 pixels according to the semi -transparency mode sel ected. Processing speed islower in
this mode because additional reading and calculating are necessary. There are 4 semi -transparency modesin the
GPU.

B= the pixel read from the image in the frame buffer, F = the half transparent pixel

10xB+05xF
10xB+10xF
10xB-10xF
10xB+025xF

A new semi transparency mode can be set for each primitive. For primitives without texture semi - transparency
can be selected. For primitives with texture semi transparency is stored in the M SB of each pixel, so some pixels can
be set to STP others can be drawn opaque. For the CLUT modes the STP bit is obtained from the CLUT. Soif acolor
index pointsto acolor inthe CLUT with the MSB set, it will be drawn semi transparent.

When the color isblack(BGR=0), STPis processed different from when it's not black (BGR<>0). The table below
shows the differences:

Transparency Processing (bit 1 of command packet)
BGR STP off on
0,00 0 Transparent Transparent
0,00 1 Non-transparent Non-transparent
XXX 0 Non-transparent Non-transparent
XXX 1 Non-transparent Transparent
Shading

The GPU has a shading function, which will scale the color of aprimitiveto aspecified brightness. There are 2
shading modes: Flat shading, and gourad shading. Flat shading is the mode in which one brightness valueis
specified for the entire primitive. In gourad shading mode, a different brightness value can be given for each vertex of
aprimitive, and the brightness between these pointsis automatically interpolated.

Mask

The mask function will prevent to GPU to write to specific pixels when drawing in the frame buffer. This means
that when the GPU is drawing aprimitive to amasked area, it will first read the pixel at the coordinate it wantsto write
to, check if it'smasking bit is set, and if so refrain from writing to that particular pixel. The masking bit isthe MSB of
the pixel, just like the STP bit. To set this masking bit, the GPU provides a mask out mode, which will set the MSB of
any pixel it writes. If both mask out and mask evaluation are on, the GPU will not draw to pixelswith set MSB's, and
will draw pixels with set MSB's to the others, these in turn becoming masked pixels.

Drawing Environment
The drawing environment specifies all global parameters the GPU needs for drawing primitives.

Drawing offset.
Thislocates the top left corner of the drawing area. Coordinates of primitives originate to this point. So if
the drawing offset is (0,240) and a vertex of apolygon islocated at (16,20) it will be drawn tothe frame buffer at
(0+16,240+20).

Drawing clip area
This specifies the maximum range the GPU draws primitivesto. So in effect it specifiesthe top left and
bottom right corner of the drawing area.

Dither enable
When dither is enabled the GPU will dither areas during shading. It will processinternally in 24 bit and
dither the colors when converting back to 15-bit. When it is off, the lower 3 bits of each color simply get discarded.

Draw to display enable.
Thiswill enable/disable any drawing to the areathat is currently displayed.

Mask enable
When turned on any pixel drawn to the frame buffer by the GPU will have a set masking hit. (= set MSB)

Mask judgement enable
Specifiesif the mask data from the frame buffer is evaluated at the time of drawing.

Display Environment.
This contains all information about the display, and the area displayed.

Display areain frame buffer
This specifies the resolution of the display. The size can be set asfollows:
Width: 256,320,384,512 or 640 pixels
Height: 240 or 480 pixels

These sizes are only an indication on how many pixelswill be displayed using a default start end. These
settings only specify the resolution of the display.

Display start/end.
Specifieswhere the display areais positioned on the screen, and how much data gets sent to the screen.

The screen sizes of the display areaare valid only if the horizontal/vertical start/end values are default. By changing
these you can get bigger/smaller display screens. On most TV'sthereis sonme black around the edge, which can be
utilized by setting the start of the screen earlier and the end later. The size of the pixelsis NOT changed with these
settings, the GPU simply sends more data to the screen. Some monitors/TVs have asmaller display areaand the
extended size might not be visible on those sets.(Mine is capable of about 330 pixels horizontal, and 272 vertical in
320* 240 mode)

Interlace enable
When enabled the GPU will display the even and odd lines of the display areaalternately. It is necessary to set
thiswhen using 480 lines as the number of scan lineson a TV screen are not sufficient to display 480 lines.

15hit/24bit direct display
Switches between 15hit/24bit display mode.

Video mode
Sel ects which video mode to use, which are either PAL or NTSC.

GPU operation

GPU control registers.

Thereare 2 32 hit |0 portsfor the GPU, which are at 0x1f80_1810 for GPU Data and 0x1f80_1814 for GPU
control/Status. The dataregister is used to exchange data with the GPU and the control/status register givesthe
status of the GPU when read, and sets the control bits when written to.

Control/Status Register 0x1f80_1814
Status (Read) High
31 16
Icf | dma | com | img [busy | ? | ?]| den | isinter | isrgh24 | Video | Height [WidthO | Widthl
1 2 1 1 1 1]1] 1 1 1 1 1 2 1
WO w1
Width 00 0 256 pixes
01 0 320
10 0 512
11 0 640
00 1 334
Height O 240 pixes
1 480
Video 0 NTSC
1 PAL
isrgh24 0 15-bit direct mode
1 24-hit direct mode
isinter O Interlace of f
1 Interlace on
den 0 Display enabled
1 Display disabled
busy O GPU isBusy (i.e. drawing primitives)
1 GPUisldle
img 0 Not Ready to send image (packet $c0)
1 Ready
com 0 Not Ready to receive commands
1 Ready
dma 00 DMA off, communication through GPO
01 Unknown
10 DMA CPU ->GPU
11 DMA GPU ->CPU
I cf 0 Drawing even linesin interlace mode
1 Drawing uneven linesin interlace mode

Status (Read) Low

N
N
Y]
3

717 md | dfe | dtd | tp | abr | ty [tX
1j]1)1) 1 | 1 {1 (1]2 2]|1]4

tx 0 0 Texture page X = tx*64
1 64
2 128
3 196
4
ty 0 0 Texture page Y
1 256
abr 00 05xBH05x F Semi transparent state
01 10xB+10x F
10 10xB-10x F
11 10xB+0.25x F
tp 00 4-bit CLUT Texture page color mode
01 8-bit CLUT
10 15-bit
dtd 0 Dither off
1 Dither on
dfe 0 off Draw to display area prohibited
1 on Draw to display area allowed
md 0 off Do not apply mask bit to drawn pixels
1 on Apply mask bit to drawn pixels
me 0 off Draw over pixel with mask set
1 on No drawing to pixels with set mask bit.

Control (Write)
A control command is composed of one word as follows:

| command | parameter |
31 1615 0

The composition of the parameter is different for each command.

Reset GPU
command ox00
parameter (0x000000
Description Resets the GPU. Also turns off the screen. (sets status to $14802000)

Reset Command Buffer

command ox01

parameter (0x000000

Description Resets the command buffer.
Reset IRQ

command ox02

parameter (0x000000

Description Resetsthe IRQ.
Display Enable

command ox03

parameter (0x000000 Display disable

(0x000001 Display enable

description

Turns on/off display. Note that aturned off screen still givesthe flicker of NTSC on apal screen if
NTSC modeis selected..

DMA setup.
command ox04
parameter 0x000000 DMA disabled
(0x000001 Unknown DMA function
(0x000002 DMA CPU to GPU
(0x000003 DMA GPU to CPU
description Sets DMA direction.
Start of display area
command ox05
parameter bit 0x00-0x09 X (0-1023)
bit Ox0a-0x12 Y (0-512) = Y<<10 + X
description L ocates the top left corner of the display area.

Horizontal Display range

command
parameter

description

0x06

bit 0x00-OxOb

bit OxOc-Ox17

X1 (0x1f4-0XCDA)
X2 = X14X2<<12

Specifies the horizontal range within which the display areais displayed. The display isrelative to
the display start, so X coordinate O will be at the valuein X1. The display end is not relative to the display start. The
number of pixelsthat get sent to the screen in 320 mode are (X2-X 1)/8. How many actually are visible depends on
your TV/monitor. (normally $260-$c56)

Vertical Display range

command
parameter

description

ox07
bit 0x00-0x09
bit OxOa-Ox14

Y1
Y2 =Y1+Y2<<10

Specifiesthe vertical range within which the display areais displayed. The display isrelative to the
display start, so Y coordinate O will be at thevaluein Y 1. The display end is not relative to the display start. The
number of pixelsthat get sent to the display are Y 2-Y 1, in 240 mode. (Not sure about the default values, should be
something like NTSC $010-$100, PAL $023-$123)

Display mode
command ox08
parameter bit Ox00-0x01 Width 0
bit 0x02 Height
bit Ox03 Video mode: See above
bit Ox04 Isrgh24
bit Ox05 Isinter
bit 0x06 Widthl
bit Ox07 Reverse flag
description Sets the display mode.
Unknown
command ox09
parameter 0x000001 ??
description Used with value $000001
GPU Info
command 0x10
parameter (0x000000

(0x000001

(0x000002

0x000003 Draw areatop left

0x000004 Draw area bottom right

(0x000005 Draw offset

(0x000006

0x000007 GPU Type, should return 2 for a standard GPU description. Returns requested

info. Read result from GPO. 0,1 seem to return draw areatop left also 6 seemsto return draw offset too.

command 0x20
parameter 700?

description Used with value $000504

Command Packets, Data Register
Primitive command packets use an 8 bit command value which ispresent in all packets. They contain a 3 bit
type block and a5 bit option block of which the meaning of the bits depend on the type. layout is as follows:

Type

000 GPU command

001 Polygon primitive

010 Line primitive

011 Sprite primitive

100 Transfer command

111 Environment command

Configuration of the option blocks for the primitivesis as follows:

Palygon
Type Option
o | o | 1 np | vix | TME | ABE | TGE
7 6 5 4 3 2 1 0
Line
Type Option
o | 1 | o WP | AL | o |ABE] o
7 6 5 4 3 2 1 0
Sprite
Type Option
1 | o | o Sze | TME [ABE | ©
7 6 5 4 3 2 1 0
1P 0 Flat Shading
1 Gourad Shading
VTX 0 3 vertex polygon
1 4 vertex polygon
TME O Texture mapping off

Texture mapping on

Semi transparency off

Semi transparency on
Brightness calculation at time of texture mapping on
off. (draw texture asis)

Free size (Specified by W/H)
1x 1

8x 8

16x 16

Singleline (2 vertices)
Polyline (n vertices)

ABE

TGE

Size

PLL

roOopBRgroror

Color information
Color information isforwarded as 24-bit data. It is parsed to 15-bit by the GPU.

Layout asfollows:

| Blue | Green | Red |
23 1615 87 0

Shading information.

For textured primitive shading data is forwarded by this packet. Layout isthe same as for color data, the RGB
values controlling the brightness of the individual colors ($00-$7f). A value of $80 in a color will take the former value
as data.

| Blue | Green | Red |
23 1615 87 0

*Texture Page information
The Datais 16 bit wide, layout is asfollows:

0 TP ABR [TY TX
5 || B3]l2|un]lw]o]l 8 |76]5]4a]3]2]1]o0

TX
TY

=)
4

X*64 t texture page x coordinate
0 texture pagey coordinate
256

05xBHO5x F Semi transparency mode
10xB+10x F

10xB-10xF

10xB+0.25x F

4-bit CLUT

8-bit CLUT

15-bit direct

ABR

P

NFPOWNREFEORFRO

CLUT-ID
Specifiesthelocation of the CLUT data. Datais 16-bits.

Y coordinate 0-511 X coordinate X/16
5 ||| n]w|o]s8s |76 [s5]a]3]2]1]o

Abbreviationsin packet list

BGR Color/Shading info see above.

xnyn 16 bit valuesof X and Y in frame buffer.
unyvn 8bhitvaluesof X and Y in texture page
tpage texture pageinformation packet, see above
clut CULT ID, see above.

Packet list

The packets sent to the GPU are processed as a group of data, each one word wide. The data must be
written to the GPU dataregister ($1f801810) sequentially. Once all data has been received, the GPU
starts operation.

Overview of packet commands:
Primitive drawing packets

0x20 monochrome 3 point polygon

0x24 textured 3 point polygon

0x28 monochrome 4 point polygon

Ox2c textured 4 point polygon

0x30 gradated 3 point polygon

0x34 gradated textured 3 point polygon

0x38 gradated 4 point polygon

0x3c gradated textured 4 point polygon

0x40 monochromeline

0x48 monochrome polyline

0x50 gradated line

0x58 gradated line polyline

0x60 rectangle

0x64 sprite

0x68 dot

0x70 8*8rectangle

Ox74 8*8 sprite

0x78 16*16rectangle

Ox7c 16*16 sprite
GPU command & Transfer packets

0x01 clear cache

0x02 frame buffer rectangle draw

Ox80 moveimagein frame buffer

Oxa0 send image to frame buffer

0xcO copy image from frame buffer
Draw mode/environment setting packets

Oxel draw mode setting

Oxe2 texture window setting

Oxe3 set drawing areatop left

Oxed set drawing area bottom right

0Oxe5 drawing offset

Oxe6 mask setting

Packet Descriptions
Primitive Packets

0x20 monochrome 3 point polygon

Order [31 2423 1615 g7
1 0x20 BGR Command + Color
2 y0 X0 \Vertex O
3 yl x1 \Vertex 1
4 y2 X2 \Vertex 2
0x24 textured 3 point polygon
Order 31 2423 1615 g7
1 0x24 BGR Command + Color
2 y0 X0 \Vertex O
3 CLUT v0 | uo CULT ID + texture coordinates vertex 0
4 yl x1 \Vertex 1
5 tpage vl | ul Texture page + texture coordinates vertex 1
6 y2 X2 \Vertex 1
7 v2 | u2 [Texturecoordinatesvertex 2
0x28 monochrome 4 point polygon
Order [31 2423 1615 g7 d
1 0x28 BGR Command + Color
2 y0 x0 \Vertex O
3 yl X1 Vertex 1
4 y2 X2 Vertex 2
5 y3 y3 \Vertex 3

Ox2c textured 3 point polygon

Order [31 2423 1615 g7
1 Ox2c BGR Command + Color Vertex 0
2 y0 X0 Vertex 0
3 CLUT v0 | uo CULT ID + texture coordinates vertex 0
4 yl x1 \Vertex 1
5 tpage vl | ul Texture page + texture coordinates vertex 1
6 y2 X2 \Vertex 2
7 v2 | u2 Texture coordinates vertex 2
8 y3 X3 Vertex 3
9 v3 | v3 [Texturecoordinatesvertex 3
0x30 gradated 3 point polygon
Order [31 2423 1615 g7
1 0x30 BGRO Command + Color Vertex O
2 y0 | X0 Vertex 0
3 | BGRL Color Vertex 1
4 yl | Vertex 1
5 | BGR2 Color Vertex 2
6 y2 | X2 Vertex 2
0x34 shaded textured 3 point polygon
Order 31 2423 1615 g7
1 x4 BGRO Command + Color Vertex 0
2 y0 X0 \Vertex O
3 CLUT v0 | uo CULT ID + texture coordinates vertex 0
4 | BGRL Color Vertex 1
5 yl x1 \Vertex 1
6 tpage vl | ul Texture page + texture coordinates vertex 1
7 | BGR2 Color vertex 2
8 y2 X2 Vertex 2
9 v2 | u2 |CULTID + texture coordinates vertex 2
0x38 gradated 4 point polygon
Order [31 2423 1615 g7
1 0x33 BGRO Command + Color Vertex 0
2 y0 | X0 Vertex0
3 | BGRL Color Vertex 1
4 y1 | X1 Vertex 1
5 | BGR2 Color Vertex 2
6 y2 | X2 Vertex 2
7 | BGR3 Color Vertex 3
8 y3 | X3 Vertex 3

Ox3c shaded textured 4 point polygon

Order [31 2423 1615 g7
1 x3c BGRO Command + Color Vertex 0
2 y0 X0 Vertex 0
3 CLUT v0 | uo CULT ID + texture coordinates vertex 0
4 | BGRL Color Vertex 1
5 yl x1 \Vertex 1
6 tpage vl | ul Texture page + texture coordinates vertex 1
7 | BGR2 Color vertex 2
8 y2 X2 Vertex 2
9 v2 | u2 |CULTID + texture coordinates vertex 2
10 | BGR3 Color vertex 3
11 y3 x3 \Vertex 3
12 v3 | 32 CULT ID + texture coordinates vertex 3
0x40 monochromeline
Order [31 2423 1615 g7 d
1 0x40 BGR Command + Color
2 y0 X0 \Vertex O
3 yl x1 \Vertex 1
0x48 single color polyline
Order [31 2423 1615 g7 d
1 0x48 BGR Command + Color
2 y0 X0 \Vertex O
3 yl x1 \Vertex 1
4 y2 X2 \Vertex 2
yn xn \Vertex n
0x55555555 Termination code

Any number of points can be entered, end with termination code.

0x50 gradated line

Order [31 2423 1615 g7 d
1 0x50 BGRO Command + Color Vertex O
2 y0 | X0 Vertex 0
3 | BGRL Color Vertex 1
4 yl | X1 Vertex 1

0x58 gradated polyline

Order |31 2423 1615 g7 d
1 Ox58 BGRO Command + Color Vertex O
2 y0 | X0 Vertex 0
3 | BGRL Color Vertex 1
4 yl | X1 Vertex 1
5 | BGR2 Color Vertex 2
6 y2 | X2 Vertex 2
| BGRn Color Vertex n
yn | xn \Vetexn
0x55555555 Termination code

Any number of points can be entered, end with termination code.

0x60 Rectangle

Order 31 2423 1615 g7 d
1 0x60 BGR Command + Color
2 y X upper left corner location
3 h w height and width
0x64 Sprite
Order 31 2423 1615 g7 d
1 oxe4 BGR Command + Color
2 y X upper left corner location
3 CLUT v | CULT ID + texture coordinates page y,X
4 h w height and width
0x68 Dot
Order [31 2423 1615 g7 d
1 0x63 BGR Command + Color
2 y | X location
0x70 8x8 Rectangle
Order 31 2423 1615 g7 d
1 0x70 BGR Command + Color
2 y | X location
0x74 8x8 Sprite
Order [31 2423 1615 g7 d
1 0x74 BGR Command + Color
2 y X location
3 CLUT \ | CULT ID + texture coordinates page y,X

0x78 16x16 Rectangle

Order [31 2423 1615 g7 d
1 0x78 BGR Command + Color
2 y | X location
0x7c 16x16 Sprite
Order [31 2423 1615 g7 d
1 ox74 BGR Command + Color
2 y X location
3 CLUT v o CULT ID + texture coordinates page y,x
GPU command & Transfer packets
0x01Clear cache
Order [31 2423 1615 g7 d
1 Oox01 0 clear cache
0x02 frame buffer rectangle draw
Order [31 2423 1615 g7 d
1 ox02 BGR Command + Color
2 y X upper left corner location
3 h w height and width

Fillsthe areain the frame buffer with the value in RGB. This command will draw without regard to drawing
environment settings. Coordinates are absolute frame buffer coordinates. Max width is 0x3ff, max height is Ox1ff.

0x80 Rectangle
Order [31 2423 1615 g7 d
1 0x80 BGR Command + Color
2 sy SX Source coordinate.
4 dy dx Destination coordinate
5 h w height and width of transfer

Copies datawithin frame buffer

0x01 Oxa0 send imageto frame buffer

Order [31 2423 1615 g7 d
1 0x01 Reset command buffer (writeto GP1 or GP0O)
2 O0xa0 BGR Command + Color
3 y | X Destination coordinate

4 h w height and width of transfer
5 pix1 pix0 image data
6..

pixn pixn-1

Transfers data from main memory to frame buffer If the number of pixelsto be sent isodd, an extra should be

sent. (32 bits per packet)

0x01 0xcO send image to frame buffer

Order [31 2423 1615 g7 d
1 Ox01 Reset command buffer (write to GP1 or GPO)
2 0xcO BGR Command + Color
3 y X Destination coordinate
4 h w height and width of transfer
5 pix1 pix0 image data
6..
pixn pixn-1

Transfers datafrom frame buffer to main memory. Wait for bit 27 of the status register to be set before
reading the image data. When the number of pixelsisodd, an extrapixel isread at the end.(because on packet is 32
bits)

Draw mode/environment setting packets

Some of these packets can also be by primitive packets, in any caseit isthe last packet of either that the
GPU received that is active. so if aprimitive setstpage info, it will over write the existing data, even if it was sent by
an 0xe? packet.

Oxel draw mode setting
9 8 7
dtd

31 2423 11 10 F4

dfe

Oxel tx

See above for explanations

tp ty

It seems that bits 11-13 of the status register can also be passed with this command on some GPU's other
than type 2. (i.e. Command 0x10000007 doesn't return 2)

Oxe2 texturewindow setting

31 2423 2019 1514 109 54 Qg
Oxe2 twx twy tww twh
twx Texture window X, (twx*8)
twy Texturewindow Y, (twy*8)
tww Texture window width, 256-(tww* 8)
twh Texture window height, 256-(twh* 8)
Oxe3 set drawing areatop left

31 2423 1615 g7 Qg

Oxe3 Y X

Setsthe drawing areatop left corner. X &Y are absolute frame buffer coordinates.

0Oxed set drawing area bottom right
2423 1d 15 &7

31

| oxet | Il v | x]

Sets the drawing area bottom right corner. X & Y are absolute frame buffer coordinates.

0xeb drawing offset
31 2423 2013 11010 0
Oxeb Offsy OffsX

OffsstY =y <<11
Sets the drawing area offset within the drawing area. X& Y are offsetsin the frame buffer.

0xe6 drawing offset
31 2423 2 1 0
Oxeb Mask2 Mask1

Mask1l Set mask bit whiledrawing. 1=o0n
Mask2 Do not draw to mask areas. 1=on

While maskl ison, the GPU will set the MB of all pixelsit draws. While mask2 is on, the GPU will not write
to pixelswith set MSB's

DMA and the GPU

The GPU hastwo DMA channelsallocated to it. DMA channel 2 is used to send linked packet liststo the
GPU and to transfer image data to and fromthe frame buffer. DMA channel 6 is sets up an empty linked list, of which
each entry pointsto the previous (i.e. reverse clear an OT.)

DMA Second Memory Address Register (D2 MADR) 0x1f80_10a0

31 0
| MADR |

MADR Pointer to the virtual addressthe DMA will start reading from/writing to.

DMA Second Block Control Register (D2_BCR) 0x1f80_10a4
31 0
| BA | BS |

16 16

BA Amount of blocks
BS Block size (words)

Sets up the DMA blocks. Once started the DMA will send BA blocks of BS

words. Don't set ablock size larger then $10 words, as the command buffer
of the GPU is 64 bytes.

DMA Second Channel Control Register (D2_CHCR) 0x1f80_10a8

31 0

[o | TR] 0 | U | col 0 | DR |
7 1 13 1 1 8 1
TR 0 No DMA transfer busy.
1 Start DMA transfer/DMA transfer busy.
LR 1 Transfer linked list. (GPU only)
CoO 1 Transfer continuous stream of data.
DR 1 Direction from memory
0 Direction from memory

This configuresthe DMA channel. The DMA starts when bit 18 is set. DMA isfinished as soon ashit 18is
cleared again. To send or receive data to/from VRAM send the appropriate GPU packets first (0xa0/0xc0)
DMA Sixth Memory AddressRegister (D6 MADR) 0x1f80_10e0

31 0
| MADR |

MADR Pointer to the virtual addressif the last entry.

DMA Sixth Block Control Register (D6_BCR) Ox1f80_10e4
31 0

| BC |

BC Number of list entries.

DMA Sixth Channel Control Register (D6_CHCR) 0x1f80_10e8

31 0
| o | TR 0 | u | col 0 | DR |
7 1 13 1 1 8 1

TR 0 No DMA transfer busy.

1 Start DMA transfer/DMA transfer busy.
LR 1 Transfer linked list. (GPU only)
6{0) 1 Transfer continuous stream of data.
DR 1 Direction from memory

0 Direction from memory

This configuresthe DMA channel. The DMA starts when bit 18 is set. DMA isfinished as soon ashit 18is
cleared again. To send or receive datato/from VRAM send the appropriate GPU packets first (0xa0/0xc0) When this
register is set to $11000002, the DMA channel will create an empty linked list of D6_BCR entries ending at the
addressin D6_MADR. Each entry has asize of 0, and points to the previous. Thefirstentry isSoif D6_MADR =
$80100010, D6_BCR=$00000004, and the DMA iskicked this mwill result in alist looking like this:

0x8010 0000 OxQOff_ffff

0x8010 0004 0x0010_ 0000

0x8010_0008 0x0010 0004

0x8010_000c 0x0010 0008
0x8010_0010 0x0010 000c

DMA Primary Control Register (DPCR) 0x1f80_10f0

| | bpmAe | bpmas | bmA4 | DMA3 | DMA2 | DMAL | DMmAO |
4 4 4 4 4 4 4 4

Each register has a4 bit control block allocated in this register.
Bit3 1=DMA Enabled

2 Unknown

1 Unknown

0 Unknown

Bit 3 must be set for achannel to operate.

Common GPU functions, step by step.
Initializing the GPU.
First thing to do when using the GPU isto initializeit. To do that take the following steps:

1 - Reset the GPU (GP1 command $00). Thisturns off the display as well.
2 - Set horizontal and vertical start/end. (GP1 command $06, $07)

3 - Set display mode. (GP1 command $08)

4 - Set display offset. (GP1 command $05)

5 - Set draw mode. (GPO command $e1)

6 - Set draw area. (GPO command $e3, $e4)

7 - Set draw offset. (GPO command $e5)

8- Enabledisplay.

Sending alinked list.

The normal way to send large numbers of primitivesisby using alinked list DMA transfer. Thislist is built up of
entries of which each pointsto the next. One entry looks like this:

dw3nYYYYYY ; nn=thenumber of wordsinthelist entry
;YYYYYY =address of next list entry & OxOOff_ffff

1 dw .. ; here goes the primitive.
2 dw ;
nn-1 dw.. ;
nn dw .. ;

Thelast entry in thelist should have Oxffffff as pointer, which isthe terminator. As soon asthisvalueis
found DMA isended. If the entry sizeis set to 0, no datawill be transferred to the GPU and the next entry is
processed.

To send thelist do this:
1- Wait for the GPU to be ready to receive commands. (bit $1c == 1)
2 - Enable DMA channel 2

3- Set GPU to DMA CPU->GPU mode. ($04000002)

3-Set D2_MADR to the start of thelist

4-Set D2_BCRto zero.

5- Set D2_CHCR to link mode, memory->GPU and DMA enable. ($01000401)

Uploading Image datathrough DMA.
To upload animageto VRAM take the following steps:

1- Wait for the GPU to beidle and DMA to finish. Enable DMA channel 2 if necessary.
2 - Send the 'Send image to VRAM' primitive. (Y ou can send thisthrough DMA if you want. Usethe linked list
method described above)
3- Set DMA to CPU->GPU ($04000002) (if you didn't do so already in the previous step)
4-Set D2_MADR to the start of thelist
5- Set D2_BCR with: bits 31-16 = Number of wordsto send (H*W /2)
bits 15- 0 = Block size of 1 word. ($01)

if H*W isodd, add 1. (Pixels are 2 bytes, send an extrablank pixel in case of an odd amount)

6 - Set D2_CHCR to continuous mode, memory -> GPU and DMA enable. ($01000201)

Notethat H, W, X and Y are awaysin frame buffer pixels, even if you send image datain other formats.

Y ou can use bigger block sizesif you need more speed. If the number of words to be sent is not amultiple of the
block size, you'll have to send the remainder separately, because the GPU only accepts an extra halfword if the
number of pixelsisodd. (i.e. of the last word sent, only the low half word is used.) Also take care not to use block
sizes bigger than 0x10, as the buffer of the GPU is only 64 bytes (=0x10 words).

Waiting to send commands

Y ou can send new commands as soon as DM A has ceased and the GPU is ready.
1- Wait for bit $18 to become 0in D2_CHCR
2 - Wait for bit $1c to become 1 in GP1.

The Geometry Transformation Engine (GTE)

The Geometry Transformation Engine (GTE) isthe heart of all 3D calculations on the PSX. The GTE can
perform vector and matrix operations, perspective transformation, color equations and the like. It is much faster than
the CPU on these operations. It is mounted as the second coprocessor and as such is no physical addressin the
memory of the PSX. All control is done through special instructions.

Basic mathematics

The GTE isbasicly an engine for vector mathematics. The basic representation of a point(vertex) in 3d space
isthrough avector of the sort [X,Y,Z]. In GTE operation there's basicly two kinds of these, vectors of variable length
and vectors of aunit length of 1.0, called normal vectors. Thefirst is used to decribe alocations and translationsin
3d space, the second to describe a direction.

Rotation of verticesis performed by multiplying the vector of the vertex with arotation matrix. The rotation
matrix isa3x3 matrix consisting of 3 normal vectors which are orthogonal to each other. (It's actually the matrix which
describes the coordinate system in which the vertex islocated in relation to the unit coordinate system. See a math
book for more details.) This matrix is derived from rotation angles as follows:

sn = sin(n), cn = cos(n)

Rotation angle A about X axis:

| 1 0 o]
| O CcA -sA
| 0 sA cA

Rotation angle B about Y axis:

| cB 0 sB|
| O 1 0]
| -sB 0 cB

Rotation angle C about Z axis:

| cC-sC 0]
| sC cC 0]
| O 0 1]

Rotation about multiple axis can be done by multiplying these matrices with eachother. Note that the order
in which this multiplication is done *1S* important. The GTE has no sine or cosine functions, so the calculation of
these must be done by the CPU.

Translation isthe simple addition of two vectors, relocating the vertex within its current coordinate system.
Needless to say the order in which translation and rotation occur for avector isimportant.

Brief Function descriptions

RTPS/RTPT
Rotate, translate and perpective transformation.

These two functions perform the final 3d calculations on one or three vertices at once. The points are first
multiplied with arotation matrix(R), and after that translated(TR). Finally a perspective transformation is applied,
which resultsin 2d screen coordinates. It also returns an interpolation value to be used with the various depth cueing
instructions.

MVMVA
Matrix & Vector multiplication and addition.

Multiplies avector with either the rotation matrix, the light matrix or the color matrix and then adds the
translation vector or background color vector.

DCPL
Depth cuelight color

First calculates a color from alight vector(normal vector of a plane multiplied with the light matrix and zero
limited) and a provided RGB value. Then performs depth cueing by interpolating between the far color vector and the
newfound color.

DPCSDPCT
Depth cue singleftriple
Performs depth cueing by interpolating between a color and the far color vector on one or three colors.

INTPL
Interpolation
Interpolates between avector and the far color vector.

SQR
Square

Calculates the square of avector.

NCSINCT
Normal Color

Calculates a color from the normal of apoint or plane and the light sources and colors. The basic color of the
plane or point the normal refersto is assumed to be white.

NCDSNCDT
Norma Color Depth Cue.
Same as NCS/NCT but also performs depth cueing (like DPCS/DPCT)

NCCSNCCT
Same NCS/NCT, but the base color of the plane or point is taken into account.

CDP
A color is calculated from alight vector (base color is assumed to be white) and depth cueing is performed
(like DPCS).

CcC
A color is calculated from alight vector and a base color.

NCLIP
Calculates the outer product of three 2d points.(ie. 3 vertices which define a plane after projection.)

The 3 vertices should be stored clockwise according to the visual point:

If thisis so, the result of this function will be negative if we are
facing the backside of the plane.

AVSZ3/AVSZ4
Adds 3 or 4 z values together and multplies them by afixed point value. Thisvalue is normally chosen so
that this function returns the average of the z values (usually further divided by 2 or 4 for easy adding to the OT)

OP
Calculates the outer product of 2 vectors.
GPF
Multiplies 2 vectors. Also returns the result as 24bit rgb value.
GPL
Multiplies avector with ascalar and adds the result to another vector. Also returns the result as 24bit rgb
value.
Instructions

The CPU has six special load and store instructions for the GTE registers, and an instruction to issue
commands to the coprocessor.

rt CPU register 0-31

od GTE dataregister 0-31

gc GTE control register 0-31

imm 16 bit immediate value

base CPU register 0-31

imm(base) address pointed to by base + imm.
b25 25 bit wide datafield.

LWC2 gd, imm(base) stores value at imm(base) in GTE dataregister gd.
SWC2 gd, imm(base) stores GTE data register at imm(base).

MTC2 rt, gd storesregister rtin GTE dataregister gd.
MFC2 rt, gd stores GTE dataregister gd in register rt.
CTC2 rt,gc storesregister rt in GTE control register gc.
CFC2 rt,gc stores GTE control register in register rt.
COP2 h25 Issues a GTE command.

GTE load and store instructions have adelay of 2 instructions, for any GTE commands or operations accessing that
register.

Programming the GTE.
Before use the GTE must be turned on. The GTE has bit 30 allocated to it in the status register of the system
control coprocessor (cop0). Before any GTE instruction is used, this bit must be set.

GTE instructions and functions should not be used in
- Delay slots of jumps and branches
- Event handlers or interrupts.

If an instruction that reads a GTE register or aGTE command is executed before the current GTE command is finished,
the CPU will hold until the instruction has finished. The number of cycles each GTE instruction takesisin the
command list.

Registers.

The GTE has 32 dataregisters, and 32 control registers, each 32 bitswide. The control registersare
commonly called Cop2C, while the dataregisters are called Cop2D. The following list describes their common use.
Theformat is explained later on.

Control Registers (Cop2C)
Number Name Description
0 R11R12 |Rotation matrix elements1to1, 1to2
1 R13R21 |Rotation matrix elements1t03,2to 1
2 R22R23 |Rotation matrix elements2t0 2, 2t0 3
3 R31R32 |Rotation matrix elements3to 1, 3to 2
4 R33 |Rotation matrix elements 3to 3
5 TRX [Translation vector X
6 TRY [Translation vector Y
7 TRZ [Translation vector Z
8 L11L12 |Light source matrix elements1to 1, 1to2
9 L1321 |Light source matrix elements1t03,2to 1
10 L221.23 |Light source matrix elements2to 2, 2t0 3
11 L31L32 |Light source matrix elements3to 1, 3t0 2
12 L33 |Light source matrix elements3to 3
13 RBK [Background color red component
14 BBK [Background color blue component
15 GBK |Background color green component
16 LR1LR2 |Light color matrix source 1& 2 red component
17 LR3LGL |Light color matrix source 3 red, 1 green component
18 LG2A.G3 |Light color matrix source 2& 3 green component
19 LB1LB2 |Light color matrix source 1& 2 blue comp
20 LB3 |Light color matrix source 3 blue component
21 RFC |Far color red component
2 GFC |Far color green component
23 BFC |Far color blue component
24 OFX |Screen offset X
25 OFY |Screen offsety
26 H Projection plane distance
27 DQA |depth queuing parameter A.(coefficient.)
28 DQB |Depth queuing parameter B.(offset.)
29 ZSF3 [Z3 average scale factor (normally 1/3)
30 ZSF4 |24 average scale factor (normally 1/4)
31 FLAG [Returnsany calculation errors.(See below)

Control Register format
The GTE uses signed, fixed point registers for mathematics. The following is a bit-wise description of the
registers.

R11R12
31 0
R11 R12
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12

R13R21
31
R13 R21
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
R22R23
31
R22 R23
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
R31R32
31
R31 R32
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
R33
31
0
R33
Sign
integral part
fractional part
1
3
12
TRX
31
Sign integral part
1 31
TRY
31
Sign integral part
1 31
TRZ
31
Sign integral part
1 31
L1112
31
L11 | L12

Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
L13L21
31
L13 L21
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
L22L 23
31
L2 L23
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
L31L32
31
L31 L32
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
L33
31
0
L33
Sign
integral part
fractional part
1
3
12
RBK
31
Sign integral part fractional part
1 19 12
GBK
31
Sign integral part fractional part
1 19 12
BBK
31
Sign integral part fractional part
1 19 12

LRILR2

31
LR1 LR2
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
LR3LLG1
31
LR3 LGL
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
LG2LG3
31
L& LG3
Sign | integral part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
LB1LB2
31
LB1 LB2
Sign | integra part | fractional part | Sign | integral part fractional part
1 3 12 1 3 12
LB3
31
0
LB3
Sign
integral part
fractional part
1
3
12
RFC
31
Sign integral part fractional part
1 27 4
GFC
31
Sign integral part fractional part
1 27 4
BFC
31
Sign integral part fractional part

1 27 4
OFX
31
Sign integral part fractional part
1 15 16
OFY
31
Sign integral part fractional part
1 15 16
H
31
0
H
integral part
16
DQA
31
0
DQA
Sign
integral part
fractional part
1
7
8
DQB
31
0
DQB
Sign
integral part
fractional part
1
7
8
ZF3
31
0

ZF3

Sign

integral part
fractional part
1
3
12
DZF4
31
0
ZF4
Sign
integral part
fractional part
1
3
12
FLAGS
31 0
Flags bit description.
31 Logical sum of bits 30-23 and bits 18-13
30 Cdculation test result #1 overflow (243 or more)
29 Calculation test result #2 overflow (243 or more)
28 Calculation test result #3 overflow (243 or more)
27 Calculation test result #1 underflow (less than -243)
26 Calculation test result #2 underflow (less than -243)
25 Calculation test result #3 underflow (less than -2*43)
24 Limiter Al out of range (lessthan O, or less than-2"15, or 2*15 or more)
23 Limiter A2 out of range (lessthan O, or less than-2"15, or 215 or more)
22 Limiter A3 out of range (less than 0, or less than-2"15, or 215 or more)
21 Limiter B1 out of range (lessthan 0, or 28 or more)
20 Limiter B2 out of range (lessthan 0, or 28 or more)
19 Limiter B3 out of range (lessthan 0, or 28 or more)
18 Limiter C out of range (lessthan O, or 2216 or more)
17 Divide overflow generated (quotient of 2.0 or more)
16 Calculation test result #4 overflow (231 or more)
15 Calculation test result #4 underflow (less than -231)
14 Limiter D1 out of range (lessthan 2°10, or 2210 or more)
13 Limiter D2 out of range (Iess than 2°10, or 210 or more)
12 Limiter E out of range (lessthan 0, or 2212 or more)

Data Registers

Dataregisters consist of the other “half” of the GTE. Note in some functions format are different from the
onethat's given here. The numbersin the format fields are the signed, integer and fractional parts of thefield. So
1,3,12 means signed(1 bit), 3 bitsintegral part, 12 bits fractional part.

Data Registers (Cop2D)
Number Name | r/iw | 31 16/15 0 Format Description
0. VXYO | rlw VYO0 VX0 13120r 1,150 [VectorOXandY

1 VZ0 r/w 0 VZ0 1,3120r 1,150 |Vector0Z

2 VXYL | rlw VY1 VX1 13120r 1,150 [VectorlXandY

3 VZ1 r/w 0 VZ1 13120r1150 [VectorlZz

4 VXY2 | rlw VY2 VX2 13120r1,150 [ector2XandyY

5 VZ2 r/w 0 \VZ2 1,3120r 1,150 |Vector2Z

6 RGB r/'w | Code, R GB 8 hitsfor each |RGB value. Codeis passed, but
not used in calculation

7 oTZ r 0 oTZ 0,150 Z Average value.

8 IRO r’w Sign IRO 1,312 Intermediate value 0. Format may
differ

9 IR1 r’w Sign IR1 1,312 Intermediate value 1. Format may
differ

10 IR2 r’w Sign IR2 1,312 Intermediate value 2. Format may
differ

11 IR3 rlw Sign IR3 1,312 Intermediate value 3. Format may
differ

12 SXYO | riw SX0 SY0 1,15,0 Screen XY coordinate FIFO (Note
1)

13 SXY1 | riw SX1 Srl 1,15,0 Screen XY coordinate FIFO

14 XY2 | riw SX2 SY2 1,15,0 Screen XY coordinate FIFO

15 SXYP | riw SXP SYP 1,150 Screen XY coordinate FIFO

16 SZ0 r/w 0 SZ0 0,16,0 Screen Z FIFO (Note 1)

17 SZ1 r/w 0 SZ1 0,16,0 Screen Z FIFO

18 SZ2 r/w 0 SZ2 0,16,0 Screen Z FIFO

19 SZ3 r/w 0 SZ3 0,16,0 Screen Z FIFO

20 RGBO | r/w | CDOBO GO,RO 8 bits each Characteristic color FIFO(Note 1)

21 RGB1 | r/lw | CD1B1 GlLR1 8 bitseach [Characteristic color FIFO

RGB2 | riw | CD2B2 GO,R2 8bitseach [CD2 isthe bit pattern of currently
executed function
RES1L - - - - Prohibited

24 MACO | riw MACO 1,310 Sum of productsvalue 1

25 MACL | riw MAC1 1,310 Sum of productsvalue 1

26 MAC2 | riw MAC2 1,310 Sum of productsvalue 1

27 MAC3 | riw MAC3 1310 Sum of productsvalue 1

28 IRGB w 0 IB,IG,IR Note 2 Note 2

29 ORGB r 0 0B,0G,OR Note 3 Note 3

30 LZCS w LZCS 1310 L eading zero count source data
(Note 4)

31 LZCR r LZCR 6,6,0 L eading zero count result (Note 4)

Note 1

The SXYx, SZx and RGBx arefirst in first out registers (FIFO). The last calculation result is stored in the last
register, and previous results are stored in previous registers. So for example when anew SXY valueis obtained the
following happens:

SXY0=SXY1
SXY1=5XY2
SXY2=SXYP
SXYP =result.

Note 2

31 1514 109 F4 0

When writing avalue to IRGB the following happens:
IR1 = IR format converted to (1,11,4)
IR2 =G format converted to (1,11,4)
IR3 =1B format converted to (1,11,4)

Note 3

ORGB
0 R G B
31 1514 109 F4 0

When writing avalue to IRGB the following happens:
IR = (IR1>>7) &Ox1f
IG = (IR2>>7) &Ox1f
IB = (IR3>>7) & Ox1f

Note 4
Reading LZCR returnsthe leading O count of LZCSif LZCSis positive and the leading 1 count of LZCS if
LZCSisnegative.

GTE Commands

This part describes the actual calculations performed by the various GTE functions. Thefirst line contains
the name of the function, the number of cyclesit takes and a brief description. The second part contains any fields
that may be set in the opcode and in the third line is the actual opcode. See the end of the list for the fields and their
descriptions. Then follows alist of all registers which are needed in the calculation under the 'in’, and alist of
registers which modified under the 'out' with a brief description and the format of the data. Next follows the
calculation which is performed after initiating the function. The format field left isthe sizein which the datais stored,
the format field on the right contains the format in which the calculation is performed. At certain pointsin the
calculation checks and limitations are done and their results stored in the flag register, see the table below. They are
identified with the code from the second column of the table directly followed by square brackets enclosing the part
of the calculation on which the check is performed. The additional Lm__identifier meansthe valueislimited to the
bottom or ceiling of the check if it exceeds the boundary.

bit description

31 Checksum.

30 Al Result larger than 43 bits and positive

29 A2 Result larger than 43 bits and positive

28 A3 Result larger than 43 bits and positive

27 Al Result larger than 43 bits and negative

26 A2 Result larger than 43 bits and negative

25 A3 Result larger than 43 bits and negative

24 B1 Vadue negative(lm=1) or larger than 15 bits(Im=0)
23 B2 Vadue negative(Im=1) or larger than 15 bits(Im=0)
22 B3 Vaue negative(Im=1) or larger than 15 bits(Im=0)
21 C1 Valuenegative or larger than 8 bits.

20 C2 Valuenegative or larger than 8 hits.

19 C3 Vaue negative or larger than 8 hits.

18 D Valuenegative or larger than 16 bits.

17 E Divide overflow. (quotient > 2.0)

16 F Result larger than 31 bits and positive.

15 F Result larger than 31 bits and negative.
14 G1 Valuelarger than 10 hits.

13 G2 Valuelarger than 10 hits.

12 H Valuenegative or larger than 12 bits.

Name | Cycles Command Description
RTPS 15 cop2 0x0180001 [Perspective transform
Fields: None

I n: VO Vector to transform [1, 15, 0]
R Rotation matri x [1,3,12]
TR Transl ati on vector [1, 31, 0]
H Vi ew pl ane di stance [0, 16, 0]
DQA Depth que interpol ation val ues. [1,7, 8]
DQB [1,7,8]
OFX Screen of fset val ues. [1, 15, 16]
OFY [1, 15, 16]

Qut : SXY fifo Screen XY coordinates. (short) [1, 15, 0]
SZ fifo Screen Z coordinate.(short) [0, 16, 0]
| RO I nterpolation value for depth queing. [1,3,12]
| RL Screen X (short) [1, 15, 0]
| R2 Screen Y (short) [1, 15, 0]
| R3 Screen Z (short) [1, 15, 0]
MAC1 Screen X (1l ong) [1, 31, 0]
MAC2 Screen Y (1l ong) [1, 31, 0]
MAC3 Screen Z (1l ong) [1, 31, 0]

Cal cul ati on:

[1,31,0] MAC1=A1[TRX + R11*VX0 + R12*VY0 + R13*VZO0] [1,31,12]

[1,31,0] MAC2=A2[TRY + R21*VX0 + R22*VY0 + R23*VZO0] [1,31,12]

[1,31,0] MAC3=A3[TRZ + R31*VX0 + R32*VY0 + R33*VZO0] [1,31,12]

[1,15,0] I R1= Lm B1[MAC1] [1, 31, 0]

[1,15,0] I R2= Lm B2[MAC2] [1, 31, 0]

[1,15,0] I R3= Lm B3[MAC3] [1, 31, 0]
SZ0<- SZ1<- SZ2<- SZ3

[0,16,0] SzZ3= Lm D(MAC3) [1, 31, 0]
SX0<- SX1<- SX2, SY0<- SYl<- SY2

[1,15,0] SX2= Lm GL[F[OFX + IR1*(H SZ)]] [1, 27, 16]

[1,15,0] SY2= Lm K[F[OFY + IR2*(H SZ)]] [1, 27, 16]

[1,31,0] MACO= F[DQB + DQA * (H S2)] [1, 19, 24]

[1,15,0] | RO= Lm H MACO] [1, 31, 0]

Not es:

Z values are limted dowmwards at 0.5 * H For smaller z values you'll have

write your own routine.

Name | Cycles Command Description
RTPT 23 cop2 0x0280030 [Perspective transform on 3 points
Fi el ds: None
in: VO Vector to transform [1, 15, 0]

V1 [1, 15, 0]
V2 [1, 15, 0]
R Rotati on matri x [1,3,12]
TR Transl ati on vector [1, 31, 0]
H Vi ew pl ane di stance [0, 16, 0]
DQA Depth que interpol ation val ues. [1,7, 8]
DB [1,7,8]
OFX Screen of fset val ues. [1, 15, 16]
OFY [1, 15, 16]

out : SXY fifo Screen XY coordinates. (short) [1, 15, 0]
SZ fifo Screen Z coordinate.(short) [0, 16, 0]
| RO I nterpolation value for depth queing. [1,3,12]
| R1 Screen X (short) [1, 15, 0]
| R2 Screen Y (short) [1, 15, 0]
| R3 Screen Z (short) [1, 15, 0]
MAC1 Screen X (long) [1, 31, 0]
MAC2 Screen Y (1l ong) [1, 31, 0]
MAC3 Screen Z (1l ong) [1, 31, 0]

Cal cul ation: Same as RTPS, but repeats for V1 and V2.

Name Cycles Command Description
MVMVA 8 cop2 0x0400012 [Multiply vector by matrix and vector addition.

Fields: sf, nx, v, cv, Im

in: VO/ V1/ V2/ I R Vector v0, vl1, v2 or [IR1, IR2,1R3]
R/ LLM LCM Rotation, light or color matrix. [1,3,12]
TR/ BK Transl ati on or background col or vector.

out : [IR1, I R2, | R3] Short vector
[MACL, MAC2, MAC3] Long vector

Cal cul ati on:

MX = matrix specified by nx
V = vector specified by v
CV = vector specified by cv

Not es:

The cv field all ows selection of the far

MACL=AL[CV1 + MX11*V1 + MX12*V2 + MX13*V3]
MAC2=A2[CV2 + MX21*V1 + MX22*V2 + MX23*V3]
MAC3=A3[CV3 + MX31*V1 + MX32*V2 + MX33*V3]
| RL=Lm B1[MAC1]
| R2=Lm _B2[MAC2]
| R3=Lm _B3[MAC3]

is not added correctly by the GTE

col or vector,

but this vector

Name Cycles Command Description
DPCL 8 cop2 0x0680029 [Depth Cue Color light
Fi el ds:
I n: RGB Primary col or. R, G, B, CODE [0, 8, 0]
I RO i nterpol ati on val ue. [1,3,12]

[IR1, I R2, | R3] Local col or vector.

[1,3,12]

CODE Code val ue from RGB. CODE [0, 8,0]
FC Far col or. [1, 27, 4]
Qut : RGBn RGB fifo Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ati on:
[1,27,4] MACL=Al[R*IR1 + IRO*(LmB1[RFC - R * IR1])] [1, 27, 16]
[1,27,4] MAC2=A2[GIR2 + |RO*(LmB1[GFC - G * IR2])] [1, 27, 16]
[1,27,4] MAC3=A3[B*IR3 + |RO*(LmB1[BFC - B * IR3])] [1, 27, 16]
[1,11,4] |Rl=Lm B1[MAC1] [1, 27, 4]
[1,11,4] | R2=Lm B2[MAC2] [1, 27, 4]
[1,11,4] | R3=Lm B3[MAC3] [1, 27, 4]
[0, 8, 0] CdO<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @0<- Gl<- G2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- B1<- B2<- Lm C3[MAC3] [1, 27, 4]
Name Cycles Command Description
DPCS 8 cop2 0x0780010 [Depth Cueing
Fi el ds:
I n: | RO I nt er pol ati on val ue [1,3,12]
RGB Col or R, G B,CODE [0, 8, 0]
FC Far col or RFC, GFC, BFC [1, 27, 4]
Qut : RGBn RGB fifo Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ations:
[1,27,4] MACL=Al[(R + IRO*(LmB1[RFC - R])] [1,27,16][] m=0]
[1,27,4] MAC2=A2[(G + IRO*(LmBL[GFC - Q)] [1,27,16][] m=0]
[1,27,4] MAC3=A3[(B + IRO*(Lm B1[BFC - B])] [1,27,16][] m=0]
[1,11,4] | Rl=Lm B1[MAC1] [1,27,4][] m=0]
[1,11,4] | R2=Lm B2[MAC2] [1,27,4][] m=0]
[1,11,4] | R3=Lm B3[MAC3] [1,27,4][] m=0]
[0, 8, 0] CdO<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @<- Gl<- @2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- Bl<- B2<- Lm C3[MAC3] [1, 27, 4]
Name Cycles Command Description
DPCT 17 cop2 OXOF8002A [Depth cue color RGBO,RGB1,RGB2
Fi el ds:
I n: | RO I nterpol ati on val ue [1,3,12]

RGBO, RGB1, RGB2 Colors in RGB fifo.

Rn, Gn, Bn, CDn [0, 8, 0]

FC Far col or RFC, GFC, BFC [1, 27, 4]
Qut : RGBn RGB fifo Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ati ons:
[1,27,4] MACL1=Al[RO+ | RO*(Lm B1[RFC - RO0])] [1,27,16][] m=0]
[1,27,4] MAC2=A2[@0+ | RO*(Lm B1[GFC - @0])] [1,27,16][] m=0]
[1,27,4] MAC3=A3[BO+ | RO*(Lm B1[BFC - BO0])] [1,27,16][] m=0]
[1,11,4] |Rl=Lm B1[MAC1] [1,27,4][] m=0]
[1,11,4] | R2=Lm B2[MAC2] [1,27,4][] m=0]
[1,11,4] | R3=Lm B3[MAC3] [1,27,4][] m=0]
[0, 8, 0] CdO<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @0<- Gl<- G2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- B1<- B2<- Lm C3[MAC3] [1, 27, 4]
Performs this calculation 3 tines, so all three RGB val ues have been
repl aced by the depth cued RGB val ues.
Name Cycles Command Description
INTPL 8 cop2 0x0980011 |Interpolation of vector and far color
Fi el ds:
I n: [IR1, I R2, | R3] Vect or [1,3,12]
| RO I nt er pol ati on val ue [1,3,12]
CODE Code val ue from RGB. CODE [0, 8, 0]
FC Far col or RFC, GFC, BFC [1, 27, 4]
Qut : RGBn RGB fifo Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ations:
[1,27,4] MACL=Al[IRl + IRO*(LmB1[RFC - IR1])] [1, 27, 16]
[1,27,4] MAC2=A2[IR2 + I RO*(Lm B1[GFC - I R2])] [1, 27, 16]
[1,27,4] MAC3=A3[IR3 + I RO*(Lm B1[BFC - 1 R3])] [1, 27, 16]
[1,11,4] | Rl=Lm B1[MAC1] [1, 27, 4]
[1,11,4] | R2=Lm B2[MAC2] [1, 27, 4]
[1,11,4] | R3=Lm B3[MAC3] [1, 27, 4]
[0, 8, 0] CdO<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @<- Gl<- @2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- Bl<- B2<- Lm C3[MAC3] [1, 27, 4]
Name Cycles Command Description
QR 5 cop2 0x0A00428 |Square of vector
Fi el ds: sf
in: [IRL, 1 R2, | R3] vect or [1,15,0][1, 3, 12]
out : [IRL, 1 R2, | R3] vector”2 [1,15,0][1, 3, 12]
[MAC1, MAC2, MAC3] vector”2 [1,31,0][1,19,12]

Calculation: (left format sf=0, right format sf=1)
[1,31,0][1,19,12] MACLl=Al[Il R1*I R1] [1,43,0][1,31,12]
[1,31,0][1,19,12] MAC2=A2[| R2*| R2] [1,43,0][1,31,12]
[1,31,0][1,19,12] MAC3=A3[| R3*I| R3] [1,43,0][1,31,12]
[1,15,0][1,3,12] |Rl1=Lm B1[MAC1] [1,31,0][1,19,12] [mF1]
[1,15,0][1,3,12] | R2=Lm B2[MAC2] [1,31,0][1,19,12] [mF1]
[1,15,0][1,3,12] |R3=Lm B3[MAC3] [1,31,0][1,19,12] [mF1]
Name Cycles Command Description
NCS 14 cop2 OxOC8041E [Normal color vC
Fi el ds:
I n: VO Nor mal vect or [1,3,12]
BK Background col or RBK, GBK, BBK [1, 19, 12]
CODE Code val ue from RGB. CODE [0, 8, 0]
LCM Col or matrix [1,3,12]
LLM Light matrix [1,3,12]
Qut : RGBn RGB fifo. Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
[1,19,12] MACLI=A1[L11*VX0 + L12*VY0 + L13*VZO] [1, 19, 24]
[1,19,12] MAC2=A2[L21*VX0 + L22*VY0 + L23*VZ0] [1, 19, 24]
[1,19,12] MAC3=A3[L31*VX0 + L32*VY0 + L33*VZ0] [1, 19, 24]
[1,3,12] | Rl= Lm B1[MAC1] [1,19,12][I m=1]
[1,3,12] | R2= Lm B2[MAC2] [1,19,12][I m=1]
[1,3,12] 1 R3= Lm B3[MAC3] [1,19,12][I m=1]
[1,19,12] MACLI=A1[RBK + LR1*I Rl + LR2*I R2 + LR3*| R3] [1, 19, 24]
[1,19,12] MAC2=A2[GBK + LGL*IRl + L&*IR2 + LG&3*I R3] [1, 19, 24]
[1,19,12] MAC3=A3[BBK + LB1*I Rl + LB2*I R2 + LB3*| R3] [1, 19, 24]
[1,3,12] | Rl= Lm B1[MAC1] [1,19,12][I m=1]
[1,3,12] | R2= Lm B2[MAC2] [1,19,12][I m=1]
[1,3,12] 1 R3= Lm B3[MAC3] [1,19,12][I m=1]
[0, 8, 0] CdO<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @<- Gl<- @2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- Bl<- B2<- Lm C3[MAC3] [1, 27, 4]
Name Cycles Command Description
NCT 30 cop2 0x0D80420 [Normal color vO, v1, vZ
Fi el ds:
I n: VO, V1, V2 Nor mal vect or [1,3,12]
BK Background col or RBK, GBK, BBK [1, 19, 12]
CODE Code val ue from RGB. CODE [0, 8, 0]
LCM Col or matrix [1,3,12]
LLM Li ght matrix [1,3,12]

Qut : RGBn RGB fifo. Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ation: Same as NCS, but repeated for V1 and V2.
Name Cycles Command Description
NCDS 19 cop2 OxOEB0413 [Normal color depth cuevC
Fi el ds:
I n: VO Nor mal vect or [1,3,12]
BK Background col or RBK, GBK, BBK [1, 19, 12]
RGB Primary col or R, G, B, CODE [0, 8, 0]
LLM Light matrix [1,3,12]
LCM Col or matrix [1,3,12]
| RO I nt er pol ati on val ue [1,3,12]
Qut : RGBn RGB fifo. Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ati on:
[1,19,12] MACLI=A1[L11*VX0 + L12*VY0 + L13*VZO0] [1, 19, 24]
[1,19,12] MAC2=Al1[L21*VX0 + L22*VY0 + L23*VZ0] [1, 19, 24]
[1,19,12] MAC3=A1[L31*VX0 + L32*VY0 + L33*VZ0] [1, 19, 24]
[1,3,12] | Rl= Lm B1[MAC1] [1,19,12][I m=1]
[1,3,12] | R2= Lm B2[MAC2] [1,19,12][I m=1]
[1,3,12] 1 R3= Lm B3[MAC3] [1,19,12][I m=1]
[1,19,12] MACLI=A1[RBK + LR1*I Rl + LR2*I R2 + LR3*| R3] [1, 19, 24]
[1,19,12] MAC2=A1[GBK + LGL*IRl + L&*IR2 + LG&3*I R3] [1, 19, 24]
[1,19,12] MAC3=Al[BBK + LB1*I Rl + LB2*I R2 + LB3*| R3] [1, 19, 24]
[1,3,12] | Rl= Lm B1[MAC1] [1,19,12][I m=1]
[1,3,12] | R2= Lm B2[MAC2] [1,19,12][I m=1]
[1,3,12] 1 R3= Lm B3[MAC3] [1,19,12][I m=1]
[1,27,4] MACL=A1[R*IR1 + I RO*(Lm B1[RFC-R*I R1])] [1,27,16] [m=0]
[1,27,4] MAC2=Al[G'IR2 + IRO*(Lm B2[GFC- G| R2])] [1,27,16] [m=0]
[1,27,4] MAC3=Al[B*IR3 + | RO*(Lm B3[BFC-B*I R3])] [1,27,16] [m=0]
[1,3,12] | Rl= Lm B1[MAC1] [1,27,4][] nF1]
[1,3,12] | R2= Lm B2[MAC2] [1,27,4][] nF1]
[1,3,12] 1 R3= Lm B3[MAC3] [1,27,4][] nF1]
[0, 8, 0] CdO<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @<- Gl<- @2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- Bl<- B2<- Lm C3[MAC3] [1, 27, 4]
Name Cycles Command Description
NCDT 4 cop2 0xOF80416 |[Normal color depth cue vO, v1, v2
Fi el ds:
I n: VO Nor mal vect or [1,3,12]
V1 Nor mal vector [1,3,12]
V2 Nor mal vector [1,3,12]
BK Background col or RBK, GBK, BBK [1, 19, 12]
FC Far col or RFC, GFC, BFC [1, 27, 4]
RGB Primary col or R, G, B, CODE [0, 8, 0]

LLM Li ght matrix [1,3,12]
LCM Col or matrix [1,3,12]
| RO I nt er pol ati on val ue [1,3,12]
Qut : RGBn RGB fifo. Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ati on:
Same as NCDS but repeats for vl and v2.
Name Cycles Command Description
NCCS 17 cop2 0x108041B [Normal color col. vC
Fi el ds:
I n: VO Nor mal vect or [1,3,12]
BK Background col or RBK, GBK, BBK [1, 19, 12]
RGB Primary col or R, G, B, CODE [0, 8, 0]
LLM Light matrix [1,3,12]
LCM Col or matrix [1,3,12]
Qut : RGBn RGB fifo. Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ati on:
[1,19,12] MACL1=A1[L11*VX0 + L12*VYO + L13*VZ0] [1, 19, 24]
[1,19,12] MAC2=A2[L21*VX0 + L22*VY0 + L23*VZ0] [1, 19, 24]
[1,19,12] MAC3=A3[L31*VX0 + L32*VY0 + L33*VZ0] [1, 19, 24]
[1,3,12] [Rl= Lm B1[MAC1]
[1,19,12][1 me1]
[1,3,12] | R2= Lm B2[MAC2]
[1,19,12][1 me1]
[1,3,12] | R3= Lm B3[MAC3]
[1,19,12][1 me1]
[1,19,12] MACLI=A1l[RBK + LR1*I Rl + LR2*I R2 + LR3*| R3] [1, 19, 24]
[1,19,12] MAC2=A2[GBK + LG1*IRl + L&*IR2 + LG3*| R3] [1, 19, 24]
[1,19,12] MAC3=A3[BBK + LB1*I Rl + LB2*I R2 + LB3*| R3] [1, 19, 24]
[1,3,12] [Rl= Lm B1[MAC1]
[1,19,12][1 me1]
[1,3,12] | R2= Lm B2[MAC2]
[1,19,12][1 me1]
[1,3,12] | R3= Lm B3[MAC3]
[1,19,12][1 me1]
[1,27,4] MACL=Al[R*IR1] [1, 27, 16]
[1,27,4] MAC2=A2[G*| R2] [1, 27, 16]
[1,27,4] MAC3=A3[B*| R3] [1, 27, 16]
[1,3,12] [Rl= Lm B1[MAC1] [1,27,4][] m=1]
[1,3,12] | R2= Lm B2[MAC2] [1,27,4][] m=1]
[1,3,12] | R3= Lm B3[MAC3] [1,27,4][] m=1]
[0, 8, 0] CdO<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @<- Gl<- @2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- Bl<- B2<- Lm C3[MAC3] [1, 27, 4]

Name Cycles Command Description

NCCT 39 cop2 0x118043F [Normal color col.v0, v1, v2

Fi el ds:

I n: VO Nor mal vector 1 [1,3,12]
V1 Nor mal vector 2 [1,3,12]
V2 Nor mal vector 3 [1,3,12]
BK Background col or RBK, GBK, BBK [1, 19, 12]
RGB Primary col or R, G, B, CODE [0, 8, 0]
LLM Light matrix [1,3,12]
LCM Col or matrix [1,3,12]

Qut : RGBn RGB fifo. Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]

Cal cul ati on:
Sane as NCCS but repeats for vl and v2.

Name Cycles Command Description
CDP 13 cop2 0x1280414 [Color Depth Queue
Fi el ds:
I n: [IRL, 1 R2, | R3] Vect or [1,3,12]
RGB Primary col or R, G, B, CODE [0, 8, 0]
I RO I nterpol ation val ue [1,3,12]
BK Background col or RBK, GBK, BBK [1, 19, 12]
LCM Col or matrix [1,3,12]
FC Far col or RFC, GFC, BFC [1, 27, 4]
Qut : RGBn RGB fifo Rn, G, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ati on:
[1,19,12] MACL=A1l[RBK + LR1*I Rl + LR2*I R2 + LR3*| R3] [1, 19, 24]
[1,19,12] MAC2=A2[GBK + LGL*I Rl + L&*IR2 + LG3*I R3] [1, 19, 24]
[1,19,12] MAC3=A3[BBK + LB1*I Rl + LB2*I R2 + LB3*| R3] [1, 19, 24]
[1,3,12] |1 Rl= Lm B1[MAC1] [1,19,12] [m=1]
[1,3,12] | R2= Lm B2[MAC2] [1,19,12] [m=1]
[1,3,12] |1 R3= Lm B3[MAC3] [1,19,12] [m=1]
[1,27,4] MACL=A1[R*IR1 + I RO*(Lm B1[RFC-R*I R1])] [1,27,16] [m=0]
[1,27,4] MAC2=A2[G'IR2 + I RO*(Lm B2[GFC-G*I R2])] [1,27,16] [m=0]
[1,27,4] MAC3=A3[B*IR3 + | RO*(Lm B3[BFC-B*I R3])] [1,27,16] [m=0]
[1,3,12] |1 Rl= Lm B1[MAC1] [1,27,4][] nme1]
[1,3,12] | R2= Lm B2[MAC2] [1,27,4][] nme1]
[1,3,12] |1 R3= Lm B3[MAC3] [1,27,4][] nme1]
[0, 8, 0] Cd0O<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @0<- Gl<- @2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- Bl<- B2<- Lm C3[MAC3] [1, 27, 4]
Name Cycles Command Description
CC 11 cop2 0x138041C [Color Cal.
Fi el ds:

I n: [IR1, I R2, | R3] Vect or [1,3,12]

BK Background col or RBK, GBK, BBK [1, 19, 12]
RGB Primary col or R, G, B, CODE [0, 8, 0]
LCM Col or matrix [1,3,12]
Qut : RGBn RGB fifo. Rn, Gn, Bn, CDn [0, 8, 0]
[IR1, I R2, | R3] Col or vector [1,11, 4]
[MACL, MAC2, MAC3] Col or vector [1, 27, 4]
Cal cul ati ons:
[1,19,12] MACLI=Al[RBK + LR1*I Rl + LR2*I R2 + LR3*| R3] [1, 19, 24]
[1,19,12] MAC2=A2[GBK + LG1*IRl + L&*I R2 + LG3*| R3] [1, 19, 24]
[1,19,12] MAC3=A3[BBK + LB1*I Rl + LB2*I R2 + LB3*| R3] [1, 19, 24]
[1,3,12] [|Rl= Lm B1[MAC1] [1,19,12][1 m=1]
[1,3,12] | R2= Lm B2[MAC2] [1,19,12][1 m=1]
[1,3,12] [R3= Lm B3[MAC3] [1,19,12][1 m=1]
[1,27,4] MACL=Al[R*IR1] [1, 27, 16]
[1,27,4] MAC2=A2[G*| R2] [1, 27, 16]
[1,27,4] MAC3=A3[B*I R3] [1, 27, 16]
[1,3,12] [|Rl= Lm B1[MAC1] [1,27,4][1 me1]
[1,3,12] | R2= Lm B2[MAC2] [1,27,4][1 me1]
[1,3,12] [R3= Lm B3[MAC3] [1,27,4][1 me1]
[0, 8, 0] CdO<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1] [1, 27, 4]
[0, 8, 0] @0<- Gl<- G2<- Lm C2[MAC2] [1, 27, 4]
[0, 8, 0] BO<- B1<- B2<- Lm C3[MAC3] [1, 27, 4]
Name Cycles Command Description
NCLIP 8 cop2 0x1400006 [Normal clipping
Fi el ds:
in: SXY0, SXY1, SXY2 Screen coordi nates [1, 15, 0]
out : MACO Qut er product of SXY1 and SXY2 with [1,31,0]
SXY0 as origin.
Cal cul ati on:
[1,31,0] MACO = F[SX0*SY1+SX1*SY2+SX2* SY0- SX0* SY2- SX1* SY0O- SX2*SY1] [1, 43, 0]
Name Cycles Command Description
AVSZ3 5 cop2 0x158002D |Average of three Z values
Fi el ds:
in: Sz1, Sz2, SZ3 Z- Val ues [0, 16, 0]
ZSF3 Di vi der [1,3,12]
out : orz Aver age. [0, 16, 0]
MACO Aver age. [1, 31, 0]
Cal cul ati on:
[1,31,0] MACO=F[ZSF3*SZ1 + ZSF3*SZ2 + ZSF3*SZ3] [1,31,12]
[0,16,0] OTZ=Lm D MACO] [1, 31, 0]
Name Cycles Command Description
AVSZ4 6 cop2 Ox168002E |Average of four Z values
Fi el ds:
in: SZ1, SZ2, SZ3, SZ4 Z- Val ues [0, 16, 0]
ZSF4 Di vi der [1,3,12]
out : orz Aver age. [0, 16, 0]

MACO Aver age. [1, 31, 0]
Cal cul ati on:
[1,31,0] MACO=F[ZSF4*SZ0 + ZSF4*SZ1 + ZSF4*SZ2 + ZSF4* SZ3] [1,31,12]
[0,16,0] OTZ=Lm D[MACO] [1, 31, 0]
Name Cycles Command Description
OoP 6 cop2 0x170000C [Outer Product
Fiel ds: sf
in: [R11R12, R22R23, R33] vector 1
[IR1, I R2, | R3] vector 2
out : [IR1, I R2, | R3] out er product

[MACL, MAC2, MAC3] out er product

Cal cul ation: (Dl1=R11R12, D2=R22R23, D3=R33)

MAC1=Al[D2*| R3 - D3*I R2]
MAC2=A2[D3*| RL - D1*| R3]
MAC3=A3[D1*| R2 - D2*I R1]
| RL=Lm B1[MACO]
| R2=Lm B2[MACL]
| R3=Lm B3[MAC2]

Name Cycles Command Description
GPF 6 cop2 0x190003D [General purpose interpolation
Fi el ds: sf
in: I RO scaling factor
CODE code field of RGB
[IRL, 1 R2, I R3] vect or
out : [IRL, 1 R2, I R3] vect or
[MAC1, MAC2, MAC3] vector
RGB2 RGB fifo.

Cal cul ati on:

MACL1=A1[| RO * |R1]
MAC2=A2[| RO * | R2]
MAC3=A3[| RO * | R3]
| RL=Lm B1[MAC1]
| R2=Lm B2[MAC2]
| R3=Lm B3[MAC3]

[0, 8, 0] Cd0O<- Cd1<- Cd2<- CODE
[0, 8, 0] RO<- R1<- R2<- Lm C1[MAC1]
[0, 8, 0] (0<- Gl<- G2<- Lm C2[MAC2]
[0, 8, 0] BO<- Bl<- B2<- Lm C3[MAC3]
Name Cycles Command Description
GPL 5 cop2 Ox1AOO03E [general purpose interpolation
Fiel ds: sf
in: | RO scaling factor
CODE code field of RGB

[IR1, I R2, | R3] vect or

[MACL, MAC2, MAC3] vector
out : [IR1, I R2, | R3] vect or
[MACL, MAC2, MAC3] vector
RGB2 RGB fifo.
Cal cul ati on:
MAC1=A1[MAC1 + IR0 * | R1]
MAC2=A2] MAC2 + IR0 * | R2]
MAC3=A3[MAC3 + IR0 * | R3]
| Rl=Lm B1[MAC1]
| R2=Lm B2[MAC2]
| R3=Lm B3[MAC3]
[0,8,0] CdO<-Cdl<-Cd2<- CODE
[0,8,0] RO<-Rl<-R2<- Lm C1[MAC1]
[0,8,0] Q0<-Gl<-G@2<- Lm C2[MAC2]
[0,8,0] BO<-Bl<-B2<- Lm C3[MAC3]
Field descriptions.
24 20 19 18 1716 1514 1312 11 10
sf X v cv Im

sf 0

=

mx

WN O

WN O

cv

WN O

3
o

vector format (1,31, 0)
vector format (1,19,12)

Multiply with rotation matrix
Multiply with light matrix
Multiply with color matrix
Unknown

V0 source vector (short)
V 1 source vector (short)
V2 source vector (short)
IR source vector (long)

Add translation vector
Add back color vector
Unknown

Add no vector

No negative limit.
Limit negative resultsto O.

A list of common MVMVA instructions:

Name Cycles Command Description
rtv0 - cop2 0x0486012 |vO * rotmatrix
revl - cop2 OxO48E012 |v1* rotmatrix
rtv2 - cop2 0x0496012 |[v2* rotmatrix

rtirl2 - cop2 OXO49EQ012 [ir * rotmatrix

rtirQ - cop2 OxO41E012 [ir * rotmatrix

rtvOotr - cop2 0x0480012 [vO* rotmatrix + tr vector
rtv1tr - cop2 0x0488012 |v1 * rotmatrix + tr vector
rev2tr - cop2 0x0490012 |v2 * rotmatrix + tr vector
rtirtr - cop2 0x0498012 |ir * rotmatrix + tr vector
rtvObk - cop2 0x0482012 |vO * rotmatrix + bk vector
rtv1bk - cop2 OxX048A012 |v1* rotmatrix + bk vector
rtv2bk - cop2 0x0492012 |v2 * rotmatrix + bk vector
rtirbk - cop2 OX049A012 |ir * rotmatrix + bk vector

Il - cop2 0x04A6412 v * light matrix. Lower limit result to O

[IlvO - cop2 0x04A6012 (vO * light matrix

vl - cop2 OXO4AEQ12 [v1* light matrix

[lv2 - cop2 0x04B6012 [v2* light matrix

[vir - cop2 OxO4BEO12 |ir * light matrix

IIvOtr - cop2 0x04A0012 |vO * light matrix + tr vector
IIvitr - cop2 Ox04A8012 |v1* light matrix + tr vector
IIv2tr - cop2 0x04B0012 |v2 * light matrix + tr vector
Ilirtr - cop2 0x04B8012 |ir * light matrix + tr vector
[IvObk - cop2 0x04A2012 (vO* light matrix + bk vector
[lv1bk - cop2 0x04AA012 |v1* light matrix + bk vector
[Iv2bk - cop2 0x04B2012 |v2* light matrix + bk vector
Ilirbk - cop2 OXx04BAO12 fir * light matrix + bk vector

Ic - cop2 0x04DA412 (vO* color matrix, Lower limit clamped to O

lcvO - cop2 0x04C6012 |vO * color matrix

levl - cop2 OXOACEQ12 |v1* color matrix

lcv2 - cop2 0x04D6012 |v2 * color matrix

levir - cop2 OXOADEQ12 ir * color matrix

IcvOtr - cop2 0x04C0012 (vO * color matrix + tr vector
lcvltr - cop2 0x04C8012 |v1* color matrix + tr vector
lcv2tr - cop2 0x04D0012 |v2* color matrix + tr vector
Icirtr - cop2 0x04D8012 |ir * color matrix + tr vector
levObk - cop2 Ox04C2012 (vO* color matrix + bk vector
levibk - cop2 OX04CA012 |v1* color matrix + bk vector
lev2bk - cop2 0x04D2012 |v2* color matrix + bk vector
leirbk - cop2 0x04DA012 |ir * color matrix + bk vector

Other instructions:

Name Cycles Command Description Format
sqri2 - cop2 0x0A80428 |square of ir 1,19,12
sqr0 - cop2 0x0A80428 |square of ir 1310
opl2 - cop2 0x178000C |outer product 1,19,12
op0 - cop2 0x170000C |outer product 1,31,0
gpf12 - cop2 0x198003D |general purposeinterpolation |1,19,12
gpfO - cop2 0x190003D [general purposeinterpolation 1,31, 0
gpl12 - cop2 0xIAB003E |general purposeinterpolation 1,19,12
gpl0 - cop2 Ox1AO003E |general purposeinterpolation 1,31, 0

The Motion Decoder (MDEC)

The Motion Decoder (MDEC) isaspecia controller chip that takes a compressed JPEG-like images and
decompresses them into 24-bit bitmapped images for display by the GPU. The MDEC can only decompress a 16x16
pixe 24-bit image at at time,called "Macroblocks" These Macrobock are encoded block that usesthe YUV (Y CbCr)
color schemewith Discrete Cosine Transformation (DCT) and Run Length Encoding (RLE) applied The MDEC aso
performs 24 to 16 bit color conversion to prepare it for whatever color depth the GPU isin. Dueto the extremely high
speed that the decompression is done, the decompressed RGB bitmaps can be combined to from larger pictures and
then ,if displayed in sequential order, to produce movies. The maximum speed is about 9,000 macroblocks per second,
thereby making amovie that is 320x240 able to be played at about 30 frames per second. MDEC data can only be
sent/received viaDMA channels 0 and 1. DMA channel 0 isfor uncompressed data going in and channel 1 isfor
retrieval of the uncompressed macroblocks. The MDEC gets controlled viathe MDEC control register at location
$1f80_1820. The current status of the MDEC can be checked using the MDEC status register at $1f80 1824. The
following is alayout of the registers.

$1f80_1820 (mdec0)
write:

31 28 27 2% 25 24 0
| u | ReB24 | u | stP| u |

Note: Thefirst word of every data segment in astr-fileisa control word written to thisregister.

u Unknown
RGB24 should be set to 0 for 24-hit color and to 1 for 16-hit. In 16-bit mode
STP toggles whether to set bit 15 of the decompressed data (semi -transparency)

$1f80_1824 (mdecl)

read:
31 L 29 28 21 26 25 24 23 22 0
| FIFO | Insync | DREQ | u | reB2 |Outsync| sTP | u
u Unknown
FIFO First-In-First-Out buffer state
InSync MDEC is busy decompressing data
OutSync MDEC istrasnferring datato man memory
DREQ Data Request
RGB24 O for 24-bit color and to 1 for 16-bit. In 16-bit mode
STP toggles whether to set bit 15 of the decompressed data (semi-transparency)
write:
31 30 0
| reset | u |
u Unknown

reset reset MDEC

MDEC Data Fomat
The MDEC uses a'lossy' picture format simalar to that of the JPEG file format. A typical picture, before
being put into the MDEC viaDMA, is of the following format;

header
macrobl ock

macroblock
footer

® Theheader isa 32 byteword.

31 1615 0

| 0x3800 | dxe |
0x3800 DatalD

size sizeif data after the header

©® TheMacrobocksarefurther broken up asfollows
Cb block
Cr block
Y0 block
Y 1 block
Y 2 block
Y 3 block

Cb,Cr The color difference blocks

YOYLY2Y3 The Luminescence blocks

® Within each block the DCT informaton and RLE compressed isisstored.

15 0
DCT
RLE
RLE
EOD
® DCT DCT data, it hasthe quantization factor and the Direct Current (DC) reference
15 109 0
| Q | DC |
Q Quantization factor (6 bits, unsigned)

DC Direct Current reference (10 bits, signed)

® RLE Run length data

15 109 0

| LENGTH | DATA |

LENGTH The number if zeros between data (6 bits, unsigned)

DATA The data (10 bits, signed)

® EOD End Of Data(Footer)

15 0

| Oxfe00 |

Letsthe MDEC know ablock isdone. Thefooter is aso the same thing.

SOUND

SPU - Sound Processing Unit

Introduction.
The SPU isthe unit responsible for all aural capabilities of the psx. It handles 24 voices, has a 512kb sound
buffer. It also has ADSR envelope filters for each voice and lots of other features.

The Sound Buffer

The SPU has control over a512kb sound buffer. Datais stored compressed into blocks of 16 bytes. Each
block contains 14 packed sample bytes and two header bytes, one for the packing and one for sample end and
looping information. One such block is decoded into 28 sample bytes (= 14 16bit samples).

In thefirst 4 kb of the buffer the SPU stores the decoded data of CD audio after volume processing and the
sound data of voice 1 and voice 3 after envelope processing. The decoded dataiis stored as 16 bit signed values,
one sample per clock (44.1 khz).

Following thisfirst 4kb are 8 bytes reserved by the system. The memory beyond that is freeto store
samples, up to the reverb work areaif the effect processor is used. The size of thiswork area depends on which type
of effect is being processed. More on that | ater.

Memory layout

(0x00000-0x003ff CD audio l€eft
0x00400-0x007ff CD audioright
(0x00800-0x00bff Voicel
(0x00c00-0x00fff Voice3
(0x01000-0x0100f System area.
0x01008-0000aK Sound data area.

OxO0o0ox-Ox 7fff Reverb work area.

Voices

The SPU has 24 hardware voices. These voices can be used to reproduce sample data, noise or can be used
as frequency modulator on the next voice. Each voice hasit's own programmable ADSR envelope filter. The main
volume can be programmed independently for left and right output.

The ADSR envelopefilter works as follows:

1vl
T r
31 Rr
Ar i
=t

Ar Attack rate, which specifies the speed at which the volume increases from zero to it's maximum value, as
soon as the note on is given. The slope can be set to lineair or exponential.
Dr Decay rate specifies the speed at which the volume decreases to the sustain level. Decay is always
decreasing exponentially.
Sl Sustain level, base level from which sustain starts.
Sr Sustain rate isthe rate at which the volume of the sustained note increases or decreases. This can be either
lineair or exponential.
Rr Release rate isthe rate at which the volume of the note decreases as soon as the note off is given.
v Volume level

t Time

The overal volume can also be set to sweep up or down lineairly or exponentially fromit's current value. This can be
done seperately for left and right.

SPU Operation

The SPU occupiesthe area 0x1f80_1c00-0x1f80_1dff. All registers are 16 bit wide.
0x1f80_1c00-0x1f80_1d7f Voice data area. For each voicethere are 8 16 bit registers structured
likethis:
0x1f80 1xx0-0x1f80 1xx2 Volume

(xx = 0xc0 + voice number)
Ox1f80 1xx0 IVolume Left
0x1f80_1xx2 \Volume Right

Volume mode:

15 14 13 0
Lo [s | W |
\AY/ 0x0000-0x3fff Voice volume.

S 0 Phase Normal
1 Inverted
Sweep mode:

15 14 13 12 1 76 0
L 1 [9 [or]e] | w |
\AY 0x0000-0x007f Voice volume.

Sl 0 Lineair slope

1 Exponential slope
Dr 0 Increase

1 Decrease
Ph 0 Normal phase

1 Inverted phase

In sweep mode, the current volume increases to its maximum value, or decreases to its mimimum value, according to
mode. Choose phase equal to the the phase of the current volume.

0x1f80_1xx4 Pitch

15 1413 0
| | Pt |
Pt 0x0000-0x3fff Specifies pitch.

Any value can be set, table shows only octaves:

0x0200 -3 octaves

Ox0400 -2

0x0800 -1

0x1000 sample pitch

0x2000 +1

Ox3fff +2

0x1f80_1xx6 Start address of Sound

15 0
| Addr |
Addr Startaddress of sound in Sound buffer /8

0x1f80_1xx8 Attack/Decay/Sustain level

15 14 87 43 0
| Am | Ar | Dr | S |
Am 0 Attack mode Linear

1 Exponential
Ar o-7f attack rate
Dr of decay rate
Sl o-f sustain level

0x1f80_1xxa Sustain rate, Release Rate.

15 14 13 12 6 5 4 0
[sm[sd| 0 | S | Rm | Rr |
Sm 0 sustain rate mode linear
1 exponential

Sd 0 sustain rate mode increase
1 decrease

Sr o-7f Sustain Rate

Rm 0 Linear decrease
1 Exponential decrease

Rr 0-1f Release Rate
Note: decay modeis always Expontial decrease, and thus cannot be set.

0x1f80_1xxc Current ADSR volume

15 0
| ASDRvol |
ADSRvol Returns the current envel ope volume when read.

0x1f80_1xxe Repeat address.

15 0

| Ra |

Ra Ox0000-Oxffff Address sample loops to at end.

Note: Setting thisregister only has effect after the voice has started (ie. KeyON), else the loop address gets reset
by the sample.

SPU Global Registers

0x1f801d80 Main volume left

0x1f801d82 Main volumeright

15 0

| MVol |

Mva OxO000-Oxffff Main volume

Sets Main volume, these work the same as the channel volume registers. See those for details.

0x1f801d84 Reverberation depth left
0x1f801d86 Reverberation depth right

15 14 0
[P | Rvd |
Rvd 0x0000-0x 7fff Setsthe wet volume for the effect.
P 0 Normal phase
1 Inverted phase

Following registers have acommon layout:

first register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|015|cl4|013|012|c11|010| c9|c8|c7 | 06|05|c4|03| 02| cl|c0|
second register:

15 8 7 6 5 4 3 2 1 0
| 0 [c17 [c16 [c15 [c14 | c13 | c12 | c11 | c10 |
c0-cl7 O Mode for channel cxx off

1 Mode for channel cxx on

0x1f80_1d88 VoiceON (0-15)
0x1f80_1d8a VoiceON (16-23)
Sets the current voice to key on. (ie. start ads)

0x1f80_1d8c Voice OFF (0-15)
0x1f80_1d8e Voice OFF (16-23)
Sets the current voiceto key off.(ie. release)

0x1f80_1d90 Channel FM (pitch Ifo) mode (0-15)
0x1f80_1d92 Channel FM (pitch Ifo) mode (16-23)
Sets the channel frequency modulation. Uses the previous channelas modul ator.

0x1f80_1d94 Channel Noise mode (0-15)
0x1f80_1d96 Channel Noise mode (16-23)
Sets the channel to noise.

0x1f80_1d98 Channel Reverb mode (0-15)
0x1f80_1d9a Channel Reverb mode (16-23)
Setsreverb for the channel. As soon as the sample ends, the reverb for that channel is turned off.

0x1f80_1d9c Channel ON/OFF (0-15)
0x1f80_1d9e Channel ON/OFF (16-23)
Returns wether the channel is mute or not.

0x1f80_1da2 Reverb work area start

15 0
| MVol |
Rewa Ox0000-Oxffff Reverb work area start in sound buffer /8

0x1f80_1da4 Sound buffer IRQ address.

15 0
| IRQa |
IRQa Ox0000-Oxffff IRQ address in sound buffer /8

0x1f80_1da6 Sound buffer IRQ address.

15 0

| Sba |

Sha (OXx0000-Oxffff Addressin sound buffer divided by eight. Next transfer to this address.

0x1f80_1da8 SPU data
15 0

Dataforwarding reg, for non DMA transfer.

0x1f80_1daa SPU control 0

15 14 13 87 65 43 2 1 0
[En [Mu| Noise [Rv|irg] DMA | & [Cr|Ee]cCe]
En 0 SPU off

1 SPU on
Mu 0 Mute SPU
1 Unmute SPU
Noise Noise clock frequency
Rv 0 Reverb Disabled
1 Reverb Enabled
Irq 0 Irq disabled
1 Irq enabled
DMA 00
01 Non DMA write (transfer through datareg)
10 DMA Write
11 DMA Read
Er 0 Reverb for external off
1 Reverb for external on
Cr 0 Reverb for CD off
1 Reverb for CD on
Ee 0 External audio off
1 External audio on
Ce 0 CD audio off
1 CD audioon

0x1f80_1dac SPU status
15 0

In SPU init routines this register get loaded with 0x4.

0x1f80_1dae SPU status

15 12 11 10 9 0
| [Dh | Rd | |
Dh 0 Decoding in first half of buffer

1 Decoding in second half of buffer
Rd 0 Spu ready to transfer

1 Spu not ready

Some of bits 9-0 are also ready/not ready states. More on that later. Functions that wait for the SPU to be ready, wait
for bits a-0 to become 0.

0x1f80_1db0 CD volumeleft
0x1f80_1db2 CD volumeright

15 14 0
[P | CDvol |
CDvad 0x0000-Ox7fff Set volume of CD input.
P 0 Normal phase.
1 Inverted phase.

0x1f80_1db4 Extern volumeleft
0x1f80_1db6 Extern volumeright

15 14 0
| P | Exvol |

Exva Ox0000-Ox7fff Set volume of External input.
P 0 Normal phase.
1 Inverted phase.

0x1dc0-& 1dff Reverb configuration area

0x1f80_1dc0

0x1f80_1dc2

0x1f80_1dc4 Lowpass Filter Frequency. 7fff = max value= nofiltering
0x1f80_1dc6 Effect volume 0 - Ox7fff, bit 15 = phase.
0x1f80_1dc8

0x1f80_1dca

0x1f80_1dcc

0x1f80_1dce Feedback
0x1f80_1dd0

0x1f80_1dd2

0x1f80_1dd4 Delaytime(see below)
0x1f80_1dd6 Delaytime(see below)
0x1f80_1dd8 Delaytime(see below)
0x1f80_ldda

0x1f80_lddc

0x1f80_1dde

0x1f80_1de0 Delaytime(see below)
0x1f80_1de2

0x1f80_1de4

0x1f80_1de6

0x1f80_1de3

0x1f80_1dea

0x1f80_1dec

0x1f80_1dee

0x1f80_1df0

0x1f80_1df2

0x1f80_1df4 Dedaytime
0x1f80_1df6 Dedaytime
0x1f80_1df8

0x1f80_1dfa

0x1f80_1dfc

0x1f80_1dfe

Reverb

The SPU is equipped with an effect processor for reverb echo and delay type of effects. This effect
processor can do one effect at atime, and for each voice you can specify wether it should have the effect applied or
not.

The effect is setup by initiaizing the registers Ox1dcO to Ox1ffe to the desired effect. | do not exactly know
how these work, but you can use the presets bel ow.

The effect processor needs a bit of sound buffer memory to perform it's calculations. The size of this
depends on the effect type. For the presets the sizes are:

Reverb off O0x00000 Hadll 0x0ade0
Room 0x026c0 Space echo 0x0f6c0
Studio small 0x01f40 Echo 0x18040

Studio medium 0x04840 Delay 0x18040

Studio large 0x06fe0 Half echo 03c00

Thelocation at which the work areaislocation is set in register Ox1da2 and it's valueisthelocation in the
sound buffer divided by eight. Common values are as follows:

Reverb off OXFFFE Hall OXEA44
Room OxFB28 Space echo OxE128
Studio small FC18 Echo OXCFF8
Studio medium OxF6F8 Delay OxCFF8
Studio large OxF204 Half echo OxF830

For the delay and echo effects (not space echo or half echo) you canspecify the delay time, and feedback.
(range 0-127) Calculations are shownbelow.

When you setup up anew reverb effect, take the following steps:

-Turn off the reverb (bit 7 in sp0)

-Set Depthto 0

-First make delay & feedback calculations.
-Copy the preset to the effect registers
-Turn onthereverb

-Set Depth to desired value.

Also make sure thereisthe reverb work areais cleared, else you might get some unwanted noise.

To use the effect on avoice, simpleturn on the corresponing bit in the channel reverb registers. Note that these get
turned off autmatically when the sample for the channel ends.

Effect presets
copy these in order to Ox1dc0-Ox1dfe

Reverb of f:

0x0000, 0x0000, 0x0000, 0Ox0000, 0x0000, 0Ox0000, 0Ox0000, O0Ox0000
0x0000, 0x0000, 0x0000, 0Ox0000, 0x0000, 0x0000, 0x0000, 0x0000
0x0000, 0x0000, 0x0000, 0Ox0000, 0x0000, 0Ox0000, 0x0000, 0x0000
0x0000, 0x0000, 0x0000, 0Ox0000, 0x0000, 0Ox0000, 0x0000, 0OxO0000

Room

0x007D, 0x005B, 0x6D80, 0x54B8, O0xBEDO, 0x0000, 0x0000, OxBA80O
0x5800, 0x5300, 0x04D6, 0x0333, Ox03F0, 0x0227, 0x0374, OxOlEF
0x0334, 0x01B5, 0x0000, 0x0000, 0x0000, 0Ox0000, 0x0000, 0Ox0000
0x0000, 0x0000, 0x01B4, 0x0136, 0x00B8, 0x005C, 0x8000, 0x8000

Studi o Smal | :

0x0033, 0x0025 Ox70F0 Ox4FA8 O0OxBCEO 0x4410 OxCOFO 0x9C00
0x5280 Ox4ECO O0Ox03E4 0x031B 0x03A4 O0Ox02AF 0x0372 0x0266
0x031C 0x025D 0x025C Ox018E O0x022F 0x0135 0x01D2 0x00B7
Ox018F 0x00B5 0x00B4 0x0080 0x004C 0x0026 0x8000 0x8000

St udi o Medi um

Ox00B1 OxO007F Ox70F0 Ox4FA8 OxBCEO 0x4510 OxBEFO 0xB4CO
0x5280 Ox4ECO 0x0904 0x076B 0x0824 O0x065F O0x07A2 0x0616
0x076C Ox0O5ED OxO5EC 0x042E O0Ox050F 0x0305 0x0462 0x02B7
0x042F 0x0265 0x0264 0x01B2 0x0100 0x0080 0x8000 0x8000

St udi o Large:
Ox00E3 O0x00A9 O0Ox6F60 Ox4FA8 OxBCEO 0x4510 OxBEFO 0xA680

0x5680 0x52C0
0x0B59 0x08DA
Ox0O5EA 0x031D

Hal | :

0x01A5 0x0139
0x6000 0x5C00
0x11C0 0x0DC3
0x09C2 0x05C1

Space Echo:

0x033D 0x0231
0x6000 0x5400
0x1A32 Ox15EF
0x1056 Ox0AEl

Echo:

0x0001 0x0001
0x0000 0x0000
0x1005 0x0005
0x0000 0x0000

Del ay:

0x0001 0x0001
0x0000 0x0000
0x1005 0x0005
0x0000 0x0000

Hal f Echo:

0x0017 0x0013
Ox5F80 0x54C0
0x0358 0x026A
0x01A0 Ox00E3

Delay time calculation:

0x0DFB
0x08D9
0x031C

0x6000
Ox15BA
0x0DCO
0x05C0

0x7EO0
Ox1ED6
Ox15EE
Ox0AEQ

OX7FFF
OX1FFF
0x0000
0x1004

OX7FFF
OX1FFF
0x0000
0x1004

0x70F0
0x0371
0x01D6
0x0058

0x0B58
0x05E9
0x0238

0x5000
0x11BB
0x09C1
0x041A

0x5000
0x1A31
0x1055
0x07A2

OxX7FFF
OxOFFF
0x0000
0x1002

OX7FFF
OXOFFF
0x0000
0x1002

0x4FA8
0x02AF
0x011E
0x0040

0x0D09
0x07EC
0x0154

0x4C00
0x14C2
0x0BC4
0x0274

0xB400
0x1D14
0x1334
0x0464

0x0000
0x1005
0x0000
0x0004

0x0000
0x1005
0x0000
0x0004

0xBCEOQ
0x02E5
0x012D
0x0028

0x0A3C
0x04B0
0x00AA

0xB800
0x10BD
0x07C1
0x013A

0xB000
0x183B
0xO0F2D
0x0232

0x0000
0x0005
0x0000
0x0002

0x0000
0x0005
0x0000
0x0002

0x4510
0x01DF
0x00B1
0x0014

0x0BD9
Ox06EF
0x8000

0xBCO00
0x11BC
0x0A00
0x8000

0x4C00
0x1BC2
O0x11F6
0x8000

0x0000
0x0000
0x0000
0x8000

0x0000
0x0000
0x0000
0x8000

OxBEFO
0x02B0
0x011F
0x8000

Choose delay time inrange 0-0x7f. XX XX means register Ox1f80_XXXX.

ridd4 = dt*64.5 - r1dcO
r1dd6 = dt*32.5 - r1dc2

r1dd8 = rldda + dt*32.5
rlde0 = rlde2 + dt*32.5
ridf4 = r1df8 + dt*32.5
rldf6 = ridfa+ dt*32.5

0x0973
0x03D2
0x8000

0xC000
0x0DC1
0x06CD
0x8000

0xB00O0
0x16B2
0x0C5D
0x8000

0x8100
0x0000
0x0000
0x8000

0x0000
0x0000
0x0000
0x8000

0x8500
0x01D7
0x0059
0x8000

The CD-ROM

Overview
The PSX uses a special two speed CD-ROM that can stream at 352K /sec.It uses the following registersto
control it
CDREGO = 0x1f80_1800
CDREG1 = 0x1f80_1801
CDREG2 = 0x1f80_1802
CDREG3 = 0x1f80_1803

REGISTER FORMAT

CDREGO write: 0 to send acommand
1 to get the result
read: I/O status
bit 0 0 REG1 command send
1 REG1 dataread
bit 1 0 datatransfer finished
1 datatransfer ready/in progress
bit 7 1 command being processed.
CDREG1 write: command

read: results

CDREG2 write: send arguments
write: 7 =flush arg buffer?

CDREG3 write: 7 =flushirq
read: hi nibble: unknown
low nibble: interrupt status
MODESFOR SETMODE
Mode bit function
M_Speed hit 7 0: normal speed 1: double speed
M_ Strsnd hit 6 0: ADPCM off 1. ADPCM on
M_Size bit 5 0: 2048 byte 1. 2340 byte
M_Size? bit 4 0:- 1. 2328 byte
M SF bit 3 bit 3 0: Channel off 1: Channel on
M_Report bit 2 0: Report off 1: Report on
M _AutoPause bit 1 0: AutoPause off 1 1: AutoPause on
M_CDDA hit 0 0: CD-DA off 1. CD-DA on

These modes can be set using the setmode command,

Status bits:
Play bit 7 playing CD-DA
Seek bit 6 seeking
Read bit 5 reading data sectors
ShellOpen bit 4 once shell open
SeekError bit 3 seek error detected
Standby bit 2 spindle motor rotating
Error bit 1 command error detected

These are the bit values for the status byte recieved from CD commands.

Interrupt values:
Nolntr Ox00 No interrupt
DataReady Ox01 Data Ready
Acknowledge | Ox02 Command Complete
Complete 0x03 Acknowledge
DataEnd oxo4 End of Data Detected
DiskError Ox05 Error Detected

These are returned in the low nibble of CDREG3. First write a1 to CDREGO before reading CDREG3. When a
command is completed it returns 3. To acknowledge an irq value after you've handled it, write a1 to CDREGO thena 7
to both CDREG2 and CDREG3. Another interrupt may be queued, so you should check CDREG3 again if O or if there's
another interrupt to be handled.

Name Command Blocked Paramater Returns
Sync 0x00 - status
Nop 0x01 - status
Setloc ox02 min,sec,sector status
Play 0x03 B - status
Forward ox04 B - status
Backward 0x05 B - status
ReadN 0x06 B - status
Standby oxQ07 B - status
Stop 0x08 B - status
Pause 0x09 B - status
Init OxCa - status
Mute 0x0b - status
Demute OxOc - status
Setfilter ox0d file,channel status
Setmode O0x0e mode status
Getparam OXOf - status,mode,file? chan?,?,?
GetlocL 0x10 - min,sec,sector,mode,file,channel
GetlocP Oox11 - track,index,min,sec,frame,amin, asec,aframe
GetTN 0x13 - status,first,total (BCD)
GetTD 0x14 rack(BCD) status,min,sec (BCD)
SeekL 0x15 B * status
SeekP 0x16 B * status
Test 0x19 B # depends on parameter
ID Ox1A B - success,flagl,flag2,00 4 letters of 1D (SCEX)
ReadS 0x1B B - status
Reset 0x1C - status
ReadTOC Ox1E B - status

* These commands' targets are set using Setloc.
Command 19 isreally aportal to another set of commands.

B means blocking. These commands return an immediate result saying the command was started, but you need to
wait for an IRQ in order to get real results.

Command descriptions:

Command |Command Name Discription
Number

(0°00] Sync Command does not succeed until all other commands complete. This can be used
for synchronization - hence the name.

0x01 Nop Does nothing; use thisif you just want the status.

ox02 Setloc This command, with its parameters, setsthe target for commands with a* for their
parameter list.

0x03 Pay Plays audio sectors from the last point seeked. Thisisamost identical to CdlReadS,
believeit or not. The main differenceisthat this does not trigger a completed read
IRQ. CdIPlay may be used on data sectors However, all sectors from datatracks are
treated as 00, so no sound isplayed. AsCdlPlay isreading, the audio data appears
in the sector buffer, but isnot reliable. Game Shark "enhancement CDs" for the 2.x
and 3.x versions used this to get around the PSX copy protection.

oxo4 Forward Seek to next track ?

Ox05 Backward [Seek to beginning of current track, or previoustrack if early in current track (like a
CD player's back button)

Ox06 ReadN Read with retry. Each sector causes an IRQ (type 1) if ModeRept ison (I think).
ReadN and ReadS cause errorsif you're trying to read a non-PSX CD or audio CD
without a mod chip.

oxo7 Standby CD-ROM aborts all reads and playing, but continues spinning. CD-ROM does not
attempt to keep its place.

Oox08 Stop Stops motor. Official way to restart is OA, but almost any command will restart it.

0x09 Pause Like Standby, except the point isto maintain the current location within reasonable
error.

Ox0A Init Multiple effects at once. Setmode = 00, Standby, abort all commands.

Oox0B Mute Turn off CDDA stream to SPU.

oxoC Demute Turn on CDDA streaming to SPU.

Oox0D Setfilter Automatic ADPCM (CD-ROM XA) filter ignores sectors except those which have
the same channel and file (parameters) in their subheader area. Thisisthe
mechanism used to select which of multiple songsin asingle XA to play. Setfilter
does not affect actual reading (sector reads still occur for all sectors).

OxOE Setmode [Sets parameters such as read mode and spin speed. See chart above the command
list.

OxOF Getparam |returns status, mode, file, channel, ?, ?

0x10 GetlocL Retrievesfirst 6 (8?) bytes of last read sector (header) Thisis used to know where
the sector came from, but is generally pointlessin 2340 byte read mode. All results
arein BCD ($12 is considered track twelve, not eighteen) Command may execute
concurrently with aread or play (GetlocL returns resultsimmediately).

Ox11 GetlocP Retrieves 8 of 12 bytes of sub-Q datafor the last-read sector. Same purpose as
GetlocL, but more powerful, and works while playing audio. All resultsarein BCD.
See note

0x13 GetTN Get first track number and number of tracksin the TOC.

0x14 GetTD Gets start of specified track (does it return sector??)

0x15 SeekL Seek to Setloc's location in data mode (can only seek to data sectors, but is accurate

to the sector)
0x16 SeekP Seek to Setloc's |ocation in audio mode (can seek to any sector, but isonly accurate
to the second)
0x19 Test This function has many subcommands that are completely different. See ending
notes
NOTES

® thesub-Q fromat isasfollows
track: track number ($AA for lead-out area)
index: index number (INDEX linesin CUE sheets)
min: minute number within track
sec. second number within track
frame: sector number within "sec" (0 to 74)
amin: minute number on entire disk
asec: second number on entire disk
aframe: sector number within "asec" (0 to 74)

©® Test subcommands

1A ID

Returns copy protection status. StatError for invalid data CD, StatStandby for valid PSX CD or audio CD. The
following bits I'm unsure about, but | think the 3rd byte has $80 bit for "CD denied" and $10 bit for "import". $80 =
copy, $90 = denied import, $10 = accepted import (Y aroze only). The 5th through 8th bytes are the SCEx ASCI| string
from the CD.

1B ReadS
Read without automatic retry.
1C Reset

Same as opening and closing the drive door.

1E ReadTOC

Reread the Table of Contents without reset.

To send a command:

- First send any arguments by writing 0 to CDREGQO, then all arguments sequentially to CDREG2

- Then write 0 to CDREGO, and the command to CDREGL.

Towait for acommand to complete:

- Wait until aCDrom irq occurs (bit 3 of the interrupt regs) The cause of the cdromirgisin the low nibble of CDREG3.
Thisisusually 3 onasuccesful comletion. Failure to complete the command will result inab5. If you don't wish to
useirg'syou can just check for the low nibble of cdreg3 to become something other than O, but make sure it doesn't
get cleared in any irq setup by the bios or some such.

To Get theresults

- Write a1 to CDREGQO, then read CDREGQO, If bit 5 is set, read areturn value from CDREGI, then read CDREGO again
repeat until bit 5 goes low.

To Clear theirq
- After command completion the irq cause should be cleared, do thisby writing a1 to CDREGO then 7 to CDREG2

and CDREG3. My guessisthat the writeto CDREG2 clears the arguments previously set from some buffer. Note
that irg's are queued, and if you clear the current, another may come up directly..

Toinit the CD:

-Flush al irg's

-CDREGO=0

-CDREG3=0
-Com_Delay=4901 ($1f801020)
-Send 2 NOP's

-Command $0a, no args.
-Demute

To sat up thecd for audio playback

CDREGO=2
CDREG2=$30
CDREG3-0
CDREGO=3
CDREG1=$30
CDREG2-0
CDREG3=$20

Also don't forget to init the SPU. (CDvol and CD enable especialy)

Y ou should not send some commands while the CD is seeking. (ie. status returns with bit 6 set.) Thing isthat the
status only gets updated after a new command. | haven't tested this for other command, but for the play command
($03) you can just keep repeating the command and checking the status returned by that, for bit 6 to go low(and bit 7
to go highin thiscase) If you don't and try to do a getloc directly after the play command reportsit's done, the cd will
stop. (I guessthe cd can't get it's current location while it's seeking, so the logic stops the seek to get an exact fix, but

never restarts..)

19 subcommands.

For one reason or another, there is a counter that counts the number of SCEX strings received by the CD-ROM

controller.

Be aware that the results for these commands can exceed 8 bytes.

oxo4

Read SCEX counter (returned in 1st byte?)

0x05

Reset SCEx counter. Thisalso sets 1A's SCEX responseto 00 00 00
00, but doesn't appear to force a protection failure.

0x20

Returns an ASCII string specifying where the CD-ROM firmware is
intended to be used ("for Japan”, "for U/C").

O0x22

Returns a chip number inside the PSX in use.

0x23

Returns another chip number.

0x24

Returns yet another chip number. Same as 22's on some PSXs

Root Counters

Overview
Root counters are timersin the PSX. There are 4 root counters.
Counter Base addr ess Synced to
0 0x1f80 1100 pixelclock
1 0x1f80 1110 horizontal retrace
2 0x1f80 1120 1/8 system clock
3 vertical retrace

Each have three registers, one with the current value, one with the counter mode, and one with atarget value.

0x11n0 Count [read]
31 1615 0
| Garbage | Count |

Count Current count value, 0x0000-0xffff
Upper word seemsto contain only garbage.

0x11n4 Mode [read/write]

31 109 8 7 6 5 4 32 10
| Garbage |Div|CIc| |Iq2| |Iq1|Tar| |En|
En 0 Counter running

1 Counter stopped (only counter 2)
Tar 0 Count to $ffff

1 Count to value in target register
gl Set both for IRQ on target reached.
192
Clc 0 System clock (it seems)

1 Pixel clock (counter 0)

Horizonta retrace (counter 1)

Div 0 System clock (it seems)

1 1/8 * System clock (counter 2)

When Clc and Div of the counters are zero, they all run at the same speed. This speed seemsto be about 8 times the
normal speed of root counter 2, which is specified as 1/8 the system clock.
Bits 10 to 31 seem to contain only garbage.

0x11n8 Count [read/write]
31 1615 0
| Garbage | Target |

Target Target value, 0XO000-Oxffff
Upper word seems to contain only garbage.

Quick step-by-step:

To set up aninterrupt using these counters you can do the following:
1- Reset the counter. (Mode = 0)
2 - Set itstarget value, set mode.
3 - Enable corresponding bit in the interrupt mask register ($1f801074)
bit 3 = Counter 3 (Vblank)
bit 4 = Counter 0 (System clock)
bit 5 = Counter 1 (Hor retrace)
bit 6 = Counter 2 (Pixel)
4 - Open an event. (Openevent bios call - $00, $08)
With following arguments:
a0-Rootcounter event descriptor or'd with the counter number.
($f2000000 - counter 0, $f2000001 - counter 1,$f2000002 - counter 2, $2000003 - counter 3)
al-Spec = $0002 - interrupt event.
a2-Mode = Interrupt handling ($1000)
a3-Pointer to your routine to be excuted.
Thereturn valuein VO isthe event identifier.

5 - Enable the event, with the corresponding bioscall ($b0,$0c) with the identifier as argument.
6 - Make sure interrupts are enabled. (Bit 0 and bit 10 of the COPO status register must be set.)
Y our handler just hasto restore the registersit uses, and it should terminate with anormal jr ra.

To turn off the interrupt, first call disable event ($b0, $0d) and then close it using the Close event call ($b0,$09) both
with the event number as argument.

Controllers

Overview

The PSX uses a9 pin device connecter for use with the PSX controller. The controller port is exactly the
same electricly asthe memory card port. The only difference isthe device driver that usesit, and it's external port
shape. The controllers are accessed viathe InitPAD StartPAD, StopPAD, PAD_init, and PAD_dr BIOS commands.
These are covered in detail within the BIOS section of this document. The controller is atype of "smart device" that
communicates data serially viathe port. Port informaton is as follows.

o0 ol o O g 2 0 0 (front wiew P3X)

pin 2 8 7 & 5 4 3 2 1

Pin signal dir active description
1 dat in pos |datafrom pad or memory-card
2 cond out pos |command datato pad or memory-card
3 +7V -- - +7.6V power source for CD-ROM drive
4 gnd - --
5 +3V -- - +3.6V power source for system
6 sel out neg |select pad or memory-card
7 ak out - data shift clock
8 - -- - N.A.
9 ack in neg |acknowladge signal from pad or memory-card

® 1) direction(in/out) is based from PSX
® 2) metal edgein pad connecter is connected pin 4 and sheald calbe.
® 3)signa SEL in PAD1, PAD2 is separated.

Comminucation timing chart
Timing is compatiblein the PAD aswell asthe Memory-card.

Overview

SEL- | |

CLK LEEEEET LEEEEET LEEEEET LEEEEET LEEEEET

CVD X 01h XXXX 42h XXXX 00h XXXX 00h XXXX 00h XXXX

Top command. First comminucation(device check)

DAT

X = none, - = H-Z

serial datatransfer is L SB-First format.

clock pluseis 250KHz.
no need Acknoledge at last data.

5866666668

SEL- for memory card in PAD access.

Communication for mat with the Pad

After the command 0x0l1h is sent to the pad dromthe system
replies with a one-byte PAD | D(0x5A),

ext ended code.

Acknoledge signal width is more than 2 usec.
timeis 16msec between SEL from previous SEL.

0x81 ismemory-card, 0xO1 is standard-pad at top command.

datais down edged output, PSX isread at up edge in shift clock.
PSX expects No-connection if not returned Acknoledge less than 100 usec.

then it wll

t he pad

send a 2-byte key code and

Normal Pad timing flow ->
10000000 1000010 1011010 1234567 1234567
C\VD | 01h | 42h | 00h | 00h | 00h
XXXXXXXX 10000010 10100101 1234567 1234567
DAT | | 41h | 5ah | SW 1 | SW 2
data contents of normal PAD.(push low)
byte b7 | b6 | b5 | b4 | b3 b2 | b1 | bO
0 N.A.
1 0x41 ‘A
2 Ox5a VA
3 LEFT DOWN RGHT UP STA 1 1 SEL
4 Square X 0 Triangle R1 L1 R2 L2
data contents NEGCON(NAM CO anal og controler, push low)
byte bz | b6 | b5 | b4 | b3 b2 | b1 | boO
o (N.A.
1 0x23
2 Ox5a 4

3 LEFT DOWN RGHT UP STA 1 1 1

4 1 1 A B R 1 1 1

5 handle data right:0x00, center:0x80

6 I button ADC data (7bit unsigned) 00hto 7Fh
7 I button ADC data 00h to 7Fh
8 L button ADC data 00hto 7Fh

unknown data bit length in +6 to +8 ADC datas. (7 or 8 may be)

mouse data contents(push |ow)

byte b7 | b6 | b5 | b4 | b3 | b2 | b1 | bO
o | e N.A.
1 0x12
2 0x5a 'z
3 1 1 1 1 1 1 1 1
4 1 1 1 1 LEFT RGHT 0 0
5 V moves 8hitSigned up:+,dwn:-,stay:00
6 H moves 8bitSigned up:+,dwn:-,stay:00

Memory cards

Memory Card Format

The memory card for the PSX is 128 kilobytes of non-volatile RAM. Thisis split into 16 blocks each
containing 8 kilobytes each. The very first block isis aheader block used as adirectory and file allocation table
leaving 15 blocks |eft over for data storage.

The data blocks contains the program data file name, block name, icon, and other critical information. The
PSX accesses the dataviaa"frame" method. Each block is split into 64 frames, each 128 bytes. The first frame (frame
0) isthe file name, frames 1 to 3 contain the icon, (each frame of animation taking up one frame) leaving the rest of the
framesfor save data.

Header block (EK) Frame 0 (File Mame, 128hytes)
Diata Block 1 Fratme 1 (Teot)
Diata Block2 Frame 2 (Tcot)
Diata Block 3 Frame 3 (Tcom)
Driata Block 4 Frame 4
Diata Block 5 Frame 5
Diata Block é Frame @
Diata Block T Frame 7
Diata Block @ Frame B
Drata Block ?

Drata Block 10
Diata Block 11
Diata Block 12 Frame &0
Diata Block 13 Frame 61
Drata Block 14 Frame 62|
Diata Block 15 Frame 63

Terms and Data For mat

Thisisthe format of the various objects within the memory card.

File Name

Country code(2 bytes)+Product number(10 bytes)+identifier(8 bytes) An example of a product number is
SCPS-0000. The identifier is avariation on the name of the game, for example FF8 will be FFO800, FF0801. The format
if the product is 4 characters, ahyphen, and then 5 characters. The actula characters don't really matter. With a
PocketStation program, the product 1D isamonochrome icon, a hyphen and the later part containing a"P"

Country Code
In Japan the codeis BI, Europeis BE, and Americais BA. An American PSX and use memory saves with the
Bl country code.

Title
Thetitleisin Shift-JIS format with amax if 32 characters. ASCII can be used as ASCI | is a subset of Shift-
JsS.

XOR Code
Thisisachecksum. Each byteis XORed one by one and the result is stored. Complies with the checksum
protocol.

Link
Thisisasequence of 3 bytesto link blocks togeather to form one continuous data bl ock.
Data Size
Total Memory |128KB = 13,1072 bytes= 0x20000bytes
1 Block BK B = 8192 bytes = 0x2000 bytes
1 Frame 128 bytes = 0x80 bytes
Header Frame
+0x00 'M' (0x4D)
+0x01 'C (0x43)
+0x02 - OX7E |Unused (0x00)
+OX7F XOR code (usualy OXOE)

Directory Frame

+0x00 IAvailible bocks
upper 4 bits
A - Availible
5- partially used
F - Unusable
Lowe 4 bits
0-Unused
1- Thereisno link, but one will be here | ater
2 - mid link block
3 - terminiting link block
F - unusable
Example
A0 - Open block
51 - Inuse, therewill be alink in the next block
52-Inuse, thisisinalink and will link to another
53-Inuse, thisisthelast in thelink
FF - Unusable

+0x01-0x03 (000000
When it'sreservered it's FF FF FF

+0x04 - O0x07 [Usebyte

00 00 00 - Open block middle link block, or end link block
Block * 0x2000 - No link, but will be alink
(002000 - one blocks will be used)

(004000 - two blocks will be used)

(00 EQ 01 - 15 blocks will be used)

+O0x08-0x09 Link order Block 0-14
If thebock isn'tinalink or if it'sthelast link in the line the ling, it's Oxffff

+0x0A-0xOB |Country Code (Bl, BA, BE)

+0x0C+0x15 |Product Code (A AAA-00000)

Japan SLPS, SCPS (from SCEI)
America SLUS, SCUS (from SCEA)
Europe SLES, SCES (from SCEE)

+0x16-0x1D I dentifier

This Number is created unique to the current game played. Meaning the first time agameis
saved on the card, every subsequent save has the same identifier, but it anew gameis started from
the beginning, that will have a different idenitifier.

+OX1E-OX7E Unused

OX7F XOR Code

THE FOLLOWING DATA REPEATSFOR THE NEXT 15BLOCKS, THEN BLOCK 1 STARTS

Block Structure
FrameO

TitleFrame

0x00

'S (0x53)

Oox01

'C (0x43)

+0x02

I con Display Flag
00...Noicon

11...Icon has 1 frame of animation (static)
12...Icon has 2 frames
13...Icon has 3 frames
+0x03

Block Number (1-15)
Ox04 - 0x43

Title

Thisis thetitlein Shift-JISformat, it allows for 32 charactersto be written
Ox44 - OX5F

Reser ved(00h)

Thisisused for the Pocketstation.

Ox60 - OX7F

Icon 16 Color Palette Data

Framel

Frame3

Icon Frame

Ox00 - OX7F

I con Bitmap

1 Frame of animaton == 1 Frame of data.

If thereisno Icon for thisbock, it's datainstead.
Frame4

Data Frame

+0x00 - OX7F

Save Data

Link Block

IFrame 1 [+0x00 - OX7F |save Data

Data Transmission

Datais trasmitted with exactly the same protocol asthe Pad datais trasmitted/revived. The pin out are
exactly the same as well, the houseing, however is adifferent shape.

o0 0 o0 0 o0 [front wview P3X)

Serial 1/0

The PSX has a8 pin serial adapter that uses a non-standars protocol for data transmission and receiving.
The pin outs are pictured here.

123456 78

1 <-— Carrier Detect (CD)
2 Ground

3 < Clear To Send (CTS)
4 Data Terminal Ready ——=
5 Transmit ---=

6 Ready To Send —--=

7 3,3Vde

8 <—— Receive

The pot speed is able to go up to amaximum of 256K bps. Normally it's used at 56K. On connecton problems
the port will attempt areconnect, but may not fall back on aslower speed. Thelink cableiswired is such.

N
v

4

N
' Z
v 0O

O~NO OIS WNPE
N
1
\

O NdWOowEFk o

The pins are like this (looking into the link cable connector looking into the pins of the cable connector) and the
connector facing up) :

CABLE

LEFT 1234567 8| RGHT LEFT| 1234567 8| RGHT

Parallel 1/0

Overview

The Parallel prtisisasort of afaux name. It'sreally an expantion port. Any device connected to this port will
have access to everything on the local bus. The address that the PIO port resides on is from 0x1f00_0000-0x1f00_ffff
The following is apin diagram of the PIO.

ug2
GND 23de 3158 GND
SCLK, 2.8224 MHz CLK 33}¢ 3182 5DATA
2t HSf K2 LoR, 441 kHz
/RD %{ }_gg PN
A22 231¢ 3-89 A23
A28 B1¢ 318 A2l
ALB 224¢ 312 ALY
ALE 224¢ 3120 ALY
Al4 =23¢ 22 Al5
A2 2ile 3198 A13
LR 22he 127 ALl
Ae St 2 A7
A4 223¢ 3] 2% A5
9], 4]s&2
+7,80 Ble 322 +7, 50
+3, 5U %{ }—21,3 +3, 54
Az 151e 3149 a3
Ap Mile 3148 p
138, 3|47
128, 3|46
. 3|4
o, 3] +4
De k¢ 12 D7
D4 S4¢ 32 05
02 Z4¢ 31 D3
Do S3¢ -39 o
5. 3]=s
~CE i_(:__38
3l =
/RESET —23¢ 3436
GMD —‘d¢ 3=F D

PSX-PI0OZ

Appendix A

Number systems

The Hexadecimal systemisasfollows

Decimal Hexadecimal
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E
31 1F
32 20
33 21

252 FC
253 FD
254 FE
255 FF

Appendix B
BIOScalls

1st column - Addressto call
2nd column - Value of $t1 when calling
3rd column - Name of the function

Arguments whenever needed are passed by $a0,1,2,3 and at $sp+0x10 when more
than 4 arguments.

0x00a0 - 0x0000 - int open(char * name, int mode)

0x00a0 - OX0001 - int Iseek(int fd , int offset , int whence)
0x00a0 - 0x0002 - int read(int fd , char *buf , int nbytes)
0x00a0 - 0x0003 - int write(int fd, char *buf , int nbytes)
0x00a0 - 0x0004 - close(int fd)

0x00a0 - OX0005 - int ioctl(int fd , int cmd , int arg)

0x00a0 - 0x0006 - exit()

0x00a0 - 0x0007 - sys_b0_39()

0x00a0 - 0x0008 - char getc(int fd)

0x00a0 - 0x0009 - putc(char ¢, int fd)

0x0020 - 0x000a - todigit

0x00a0 - 0x000b - doubl e atof (char *s)

0x00a0 - 0X000c - long strtoul (char *s, char ** ptr , int base)
0x00a0 - 0x000d - unsigned long strtol (char *s, char **ptr , int base)
0x00a0 - 0x000e - int abs(int val)

0x00aD - 0x000f - long labs(long Ival)

0x00a0 - 0X0010 - long atoi(char *s)

0x00a0 - 0x0011 - int atol (char *s)

0x00a0 - 0x0012 - atob

0x00a0 - 0x0013 - int setjmp(jmp_buf *ctx)

0x00a0 - 0x0014 - longjmp(jmp_buf *ctx , int value)

0x00a0 - 0x0015 - char *strcat(char *dst , char * src)

Ox00a0 - 0x0016 - char * strncat(char *dst , char *src, int n)
0x00a0 - 0X0017 - int strcmp(char *dst , char *src)

0x00a0 - 0X0018 - int strncmp(char *dst , char *src, int n)
0x00a0 - 0x0019 - char * strepy(char *dst , char * src)
0x00a0 - Ox001a- char * strncpy(char *dst , char *src, int n))
0x0020 - 0x001b - int strlen(char *s)

0x00a0 - 0X001c - int index(char *s, int c)

0x00a0 - 0x001d - int rindex(char *s, int)

0x00a0 - 0x001e - char *strchr(char *c, int c)

0x00a0 - Ox001f - char *strrchr(char *c, int c)

0x00a0 - 0x0020 - char * strpbrk(char *dst , *src)

0x00a0 - 0x0021 - int strspn(char *s, char * set)

0x00a0 - 00022 - int strcspn(char *s, char * set)

0x00a0 - 0x0023 - strtok(char *s, char * set)

0x00a0 - 0x0024 - strstr(char *s, char * set)

0x00a0 - 0x0025 - int toupper(int c)

0x00a0 - 0x0026 - int tolower(int c)

0x00a0 - 0x0027 - void bcopy(void *src, void *dst , int len)
0x00a0 - 0x0028 - void bzero(void *ptr , int len)

0x0020 - 0x0029 - int bcmp(void *ptrl , void *ptr2 , int len)
0x0020 - 0x002a - memcpy(void *dst , void *src, int n)
0x0020 - 0x002b - memset(void *dst , char ¢, int n)

0x0020 - 0X002¢ - memmove(void *dst , void *src, int n)
0x00a0 - 0x002d - memcmp(void *dst , void *src, int n)
0x0020 - 0X002e - memchr(void *s, intc, int n)

0x00a20 - 0x002f - int rand()

0x0020 - 0x0030 - void srand(unsigned int seed)

0x00a0 - 0x0031 - void gsort(void *base, int nel , int width , int (*cmp)*void * ,void *))
0x0020 - 0x0032 - doubl e strtod(char * s, char * endptr)
0x0020 - 0x0033 - void *malloc(int size)

0x0020 - 0x0034 - free(void * buf)

0x0020 - 0x0035 - void *Isearch(void *key , void *base, int belp , int width , int (*cmp)(void * , void *))
0x0020 - 0x0036 - void *bsearch(void *key , void *base, int nel , int size, int (*cmp)(void * , void*))
0x00a0 - 0x0037 - void * calloc(int size, int n)

0x00a0 - 0x0038 - void *realloc(void * buf , int n)

0x0020 - 0x0039 - InitHeap(void *block , int n)

0x0020 - 0x003a- _exit()

0x0020 - 0x003b - char getchar(int fd)

0x00a20 - 0X003c - putchar(char ¢, int fd)

0x0020 - 0x003d - char * gets(char *s)

0x0020 - 0xX003e - puts(char *s)

0x0020 - OX003f - printf(char *fmt , ...)

0x0020 - 0x0041 - LoadTest(char *name , XF_HDR * header)
0x0020 - 0x0042 - Load(char *name , XF_HDR *header)
0x00a0 - 0x0043 - Exec(struct EXEC *header , int argc , char **argc)
0x0020 - 0x0044 - FlushCache()

0x0020 - 0x0045 - void Install I nterruptHandl er()

0x0020 - 0x0046 - GPU_dw

0x0020 - 0x0048 - int SetGPU Status(int status)

0x00a0 - 0x0049 - GPU_cw

0x0020 - Ox004a - GPU_cwb (not sure)

0x0020 - 0x004d - int GetGPU Status()

0x00a0 - 0x0049 - GPU_sync

0x0020 - 0x0051 - LoadExec(char *name, int , int)

Ox00x0 - OX0052 - GetSysSp()

0x00a0 - 0x0054 - _96_init()

0x0020 - Ox0055 - _bu_init()

0x0020 - Ox0056 - _96_remove()

0x0020 - 0x0057 - return O (it only does this)

0x0020 - 0x0058 - return O (it only does this)

0x00a20 - 0x0059 - return O (it only does this)

0x0020 - Ox005a- return O (it only does this)

0x0020 - 0x005b - dev_tty init

0x0020 - OX005¢ - dev_tty_open

0x0020 - Ox005e - dev_tty ioctl

0x0020 - Ox005f - dev_cd_open

0x00a0 - 0x0060 - dev_cd_read

0x0020 - 00061 - dev_cd_close

0x0020 - 0x0062 - dev_cd _firstfile

0x0020 - 0x0063 - dev_cd_nextfile

0x0020 - 0x0064 - dev_cd_chdir

0x0020 - 0x0065 - dev_card_open

0x00a0 - 0x0066 - dev_card_read

0x00a0 - 0x0067 - dev_card_write

0x0020 - 0x0068 - dev_card_close

0x0020 - 0x0069 - dev_card_firstfile

0x0020 - OX006a- dev_card_nextfile

0x0020 - 0x006b - dev_card_erase

0x0020 - OX006¢ - dev_card_undelete

0x0020 - 0x006d - dev_card_format

0x0020 - OX006e - dev_card_rename

0x0020 - 0X0070- _bu_init

0x00a0 - 0x0071 - _96_init

0x00a0 - 0x0072- _96_remove

0x0020 - 0x0078 - 96 _CdSeekL

0x00a0 - 0x007c - _96_CdGetStatus

0x00a0 - 0x007e- _96_CdRead

0x00a0 - 0x0085 - _96_CdStop

0x00a0 - 0x0096 - AddCDROM Device()

0x0020 - 0x0097 - AddMemCardDevice()

0x00a20 - 0x0098 - DisableK ernel | ORedirection()

0x0020 - 0x0099 - EnableK ernell ORedirection()

0x0020 - OX009c - GetConf(int Event , int TCB , int Stack)

0x0020 - 0x009d - GetConf(int *Event , int *TCB , int * Stack)

Ox00a0 - Ox009f - SetMem(int size)

0x0020 - 00020 - _boot

0x00a0 - 0x00al - SystemError

0x00a0 - 0x00a2 - EnqueueCdintr

0x0020 - 0x00a3 - DequeueCdintr

0x0020 - 0X00a5 - ReadSector(count,sector, buffer)

0x0020 - OX00a6 - get_cd_status ??

0x00a0 - Ox00a7 - bufs_cb_0

0x00a0 - 0x00a8 - bufs cb_1

0x0020 - 00029 - bufs_cb_2

0x0020 - Ox00aa - bufs _cb_3

0x0020 - 0x00ab - _card_info

0x0020 - 0x00ac - _card_load

0x0020 - 0x00ad - _card_auto

0x0020 - Ox002e - bufs_cb_4

0x0020 - 0X00b2 - do_a long_jmp()

0x0020 - Ox00b4 - (sub_function)
0-u_long GetKernelDate (dateisin OXYYYYMMDD BCD format)
1- u_long GetKernel ?2?? (returns 3 on cex1000 and cex3000)
2 - char *GetKernelRomVersion()
3-?
4-?
5-u Iong GetRamSize() (in bytes)
6->F

0x00b0 - 0x0000 - SysMalloc (to malloc kernel memory)

0x00b0 - 0x0007 - DeliverEvent(class, event)

0x00b0 - 0x0008 - OpenEvent(class, spec, mode, func) (source code is corrected)

0x00b0 - 0x0009 - CloseEvent(event)

0x00b0 - 0x000a - WaitEvent(event)

0x00b0 - Ox000b - TestEvent(event)

0x00b0 - 0x000c - EnableEvent(event)

0x00b0 - 0x000d - DisableEvent(event)

0x00b0 - 0x000e - OpenTh

0x00b0 - 0x000f - CloseTh

0x00b0 - 0x0010 - ChangeTh

0x00b0 - 0x0012 - InitPad

(0x00b0 - 0x0013 - StartPad

0x00b0 - 0x0014 - StopPAD

0x00b0 - 0x0015 - PAD_init

0x00b0 - 0x0016 - u_long PAD_dr()

0x00b0 - 0x0017 - ReturnFromException

0x00b0 - 0x0018 - ResetEntryInt

0x00b0 - 0x0019 - HookEntryInt

0x00b0 - 0x0020 - UnDeliverEvent(class, event)
0x00b0 - 0x0032 - int open(char * name,int access)
0x00b0 - 0x0033 - int Iseek(int fd,long pos,int seektype)
0x00b0 - 0x0034 - int read(int fd,void * buf,int nbytes)
0x00b0 - 0x0035 - int write(int fd,void * buf,int nbytes)
0x00b0 - 0x0036 - close(int fd)

0x00b0 - 0x0037 - int ioctl(int fd , int cmd , int arg)
0x00b0 - 0x0038 - exit(int exitcode)

0x00b0 - 0x003a- char getc(int fd)

0x00b0 - 0x003b - putc(int fd,char ch)

0x00b0 - 0x003c - char getchar()

0x00b0 - 0x003d - putchar(char ch)

0x00b0 - 0x003e - char * gets(char *s)

0x00b0 - Ox003f - puts(char *s)

(0x00b0 - 0x0040 - cd

0x00b0 - 0x0041 - format

0x00b0 - 0x0042 - firstfile

0x00b0 - 0x0043 - nextfile

0x00b0 - 0x0044 - rename

0x00b0 - 0x0045 - delete

0x00b0 - 0x0046 - undel ete

0x00b0 - 0x0047 - AddDevice (used by AddXXXDevice)
0x00b0 - 0x0048 - RemoveDevice

0x00b0 - 0x0049 - PrintlnstalledDevices

0x00b0 - 0x004a- InitCARD

0x00b0 - 0x004b - StartCARD

0x00b0 - 0x004c - StopCARD

0x00b0 - Ox004e - _card_write

0x00b0 - Ox004f - _card_read

0x00b0 - 00050 - _new_card

0x00b0 - 0x0051 - Krom2RawAdd

0x00b0 - 0x0054 - long _get_errno(void)

0x00b0 - 0x0055 - long _get_error(long fd)
0x00b0 - 0x0056 - GetCQOTable

0x00b0 - 0x0057 - GetBOTable

0x00b0 - 0x0058 - _card_chan

0x00b0 - 0x005h - ChangeClearPad(int)

0x00b0 - 0x005c - _card_status

0x00b0 - Ox005d - _card_wait

0x00c0 - 0x0000 - InitRCnt
0x00c0 - 0x0001 - InitException
0x00c0 - 0x0002 - SysEnglntRP(int index , long * queue)

0x00c0 - 0x0003 - SysDeqIntRP(int index , long * queue)
0x00c0 - 0x0004 - get_free EVCB_slot()

0x00c0 - 0x0005 - get_free TCB_slot()

0x00c0 - 0x0006 - ExceptionHandler

0x00c0 - 0x0007 - Install ExceptionHandlers

0x00c0 - 0x0008 - SyslnitMemory

0x00c0 - 0x0009 - SyslnitKMem

0x00c0 - 0x000a - ChangeClearRCnt

0x00c0 - 0x000b - SystemError ?7??

0x00c0 - 0x000c - InitDefInt

0x00c0 - 0x0012 - InstallDevices

0x00c0 - 0x0013 - FlushStdInOutPut

0x00c0 - 0x0014 - return O

0x00c0 - 0x0015 - _cdevinput

0x00c0 - 0x0016 - _cdevscan

0x00c0 - 0x0017 - char _circgetc(struct device_buf *circ)
0x00c0 - 0x0018 - _circputc(char ¢, struct device_buf *circ)
0x00c0 - 0x0019 - i cabort(char * str)

0x00c0 - 0x001b - Kernel Redirect(int flag)

0x00c0 - 0x001c - PatchAOTable

There are 3 morei know that arent called the same way as above:
MiPS R3000:

Exception() {
li $a0,0
syscall

}

EnterCritical Section() {
li $a0,1

syscall

}

ExitCritical Section() {
li $a0,2

syscall

}

Appendix C

GPU command listing
Overview of packet commands:

0x01 clear cache

0x02 frame buffer rectangle draw
0x20 monochrome 3 point polygon
0x24 textured 3 point polygon
0x28 monochrome 4 point polygon
Ox2c textured 4 point polygon
0x30 gradated 3 point polygon
0x34 gradated textured 3 point polygon
0x38 gradated 4 point polygon
0x3c gradated textured 4 point polygon
0x40 monochromeline

0x48 monochrome polyline

0x50 gradated line

0x58 gradated line polyline

0x60 rectangle

0x64 sprite

0x68 dot

0x70 8*8rectangle

Ox74 8*8 gprite

0x78 16*16rectangle

Ox7c 16*16 sprite

0x80 moveimagein frame buffer
Oxa0 send image to frame buffer
0xcO copy image from frame buffer
Oxel draw mode setting

Oxe2 texture window setting

0Oxe3 set drawing areatop left

Oxe4 set drawing area bottom right
Oxe5 drawing offset

Oxe6 mask setting

Appendix D

Glossary of terms

PSX
SCH
SCEA
SCEE
GTE
GPU
CPU
MDEC
PO
SPU
BIOS

Playstation

Sony Computer Entertainment Incorporated (Sony of Japan)
Sony Computer Entertainment America (Sony of America)
Sony Computer Entertainment Europe (Sony of Europe)
Geometry Transformation Engine

Graphics Processing Unit

Central Processing Unit

Motion DEcoding Chip

Parallel Input/Output port

Sound Processing Unit

Basic Input/Output System

Appendix E

Workscited — Bibliography
History of the Sony PlayStation taken from http://www.psxpower.com

TheIDTR3051 ™ , R3052 ™ RISController ™ Hardware User's Manual Revision 1.4 July 15, 1994
©1992, 1994 I ntegrated Device Technology, Inc.

System.txt, cdinfo.txt, gpu.txt, spu.txt, gte.txt
doomed@c64.org http://psx.rules.org

gte-litetxt
http://www.in-brb.de/~creature/

MDEC datafrom

jlo@ludd.luth.se and various people at PSXDEV mailing list
http://www.geocities.co.jp/Playtown/2004/
bero@geocities.co.jp

Memcard/PAD Data
HFBO03536@nifty-serve.or.jp

PIO
bitmaster @bigfoot.com

Syscall
sgf22@cam.ac.uk

Mem card format: E-nash
http://www.vbug.or.jp/users/e-nash/

e-nash@i.am

Plus the many more at PSXDEV mailing list that helped *_*

Exitcode 84905

